Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximum sum contiguous nodes in the given linked list

Maximum sum contiguous nodes in the given linked list

Given a linked list, the task is to find the maximum sum for any contiguous nodes.

Examples:  

Input: -2 -> -3 -> 4 -> -1 -> -2 -> 1 -> 5 -> -3 -> NULL 
Output:
4 -> -1 -> -2 -> 1 -> 5 is the sub-list with the given sum.

Input: 1 -> 2 -> 3 -> 4 -> NULL 
Output: 10 

Approach: Kadane’s algorithm has been discussed in this article to work on arrays to find the maximum sub-array sum but it can be modified to work on linked lists too. Since Kadane’s algorithm doesn’t require to access random elements, it is also applicable on the linked lists in linear time.

Below is the implementation of the above approach:  

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// A linked list node
class Node {
public:
    int data;
    Node* next;
};
 
/* Given a reference (pointer to pointer) to the head
of a list and an int, appends a new node at the end */
void append(Node** head_ref, int new_data)
{
    // Allocate node
    Node* new_node = new Node();
 
    Node* last = *head_ref; /* used in step 5*/
 
    // Put in the data
    new_node->data = new_data;
 
    /* This new node is going to be
    the last node, so make next of
    it as NULL*/
    new_node->next = NULL;
 
    /* If the Linked List is empty,
    then make the new node as head */
    if (*head_ref == NULL) {
        *head_ref = new_node;
        return;
    }
 
    // Else traverse till the last node
    while (last->next != NULL)
        last = last->next;
 
    // Change the next of last node
    last->next = new_node;
    return;
}
 
// Function to return the maximum contiguous
// nodes sum in the given linked list
int MaxContiguousNodeSum(Node* head)
{
 
    // If the list is empty
    if (head == NULL)
        return 0;
 
    // If the list contains a single element
    if (head->next == NULL)
        return head->data;
 
    // max_ending_here will store the maximum sum
    // ending at the current node, currently it
    // will be initialised to the maximum sum ending
    // at the first node which is the first node's value
    int max_ending_here = head->data;
 
    // max_so_far will store the maximum sum of
    // contiguous nodes so far which is the required
    // answer at the end of the linked list traversal
    int max_so_far = head->data;
 
    // Starting from the second node
    head = head->next;
 
    // While there are nodes in linked list
    while (head != NULL) {
 
        // max_ending_here will be the maximum of either
        // the current node's value or the current node's
        // value added with the max_ending_here
        // for the previous node
        max_ending_here = max(head->data,
                              max_ending_here + head->data);
 
        // Update the maximum sum so far
        max_so_far = max(max_ending_here, max_so_far);
 
        // Get to the next node
        head = head->next;
    }
 
    // Return the maximum sum so far
    return max_so_far;
}
 
// Driver code
int main()
{
    // Create the linked list
    Node* head = NULL;
    append(&head, -2);
    append(&head, -3);
    append(&head, 4);
    append(&head, -1);
    append(&head, -2);
    append(&head, 1);
    append(&head, 5);
    append(&head, -3);
 
    cout << MaxContiguousNodeSum(head);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
 
// A linked list node
static class Node
{
    int data;
    Node next;
};
 
/* Given a reference (pointer to pointer) to the head
of a list and an int, appends a new node at the end */
static Node append(Node head_ref, int new_data)
{
    // Allocate node
    Node new_node = new Node();
 
    Node last = head_ref; /* used in step 5*/
 
    // Put in the data
    new_node.data = new_data;
 
    /* This new node is going to be
    the last node, so make next of
    it as null*/
    new_node.next = null;
 
    /* If the Linked List is empty,
    then make the new node as head */
    if (head_ref == null)
    {
        head_ref = new_node;
        return head_ref;
    }
 
    // Else traverse till the last node
    while (last.next != null)
        last = last.next;
 
    // Change the next of last node
    last.next = new_node;
    return head_ref;
}
 
// Function to return the maximum contiguous
// nodes sum in the given linked list
static int MaxContiguousNodeSum(Node head)
{
 
    // If the list is empty
    if (head == null)
    return 0;
 
    // If the list contains a single element
    if (head.next == null)
        return head.data;
 
    // max_ending_here will store the maximum sum
    // ending at the current node, currently it
    // will be initialised to the maximum sum ending
    // at the first node which is the first node's value
    int max_ending_here = head.data;
 
    // max_so_far will store the maximum sum of
    // contiguous nodes so far which is the required
    // answer at the end of the linked list traversal
    int max_so_far = head.data;
 
    // Starting from the second node
    head = head.next;
 
    // While there are nodes in linked list
    while (head != null)
    {
 
        // max_ending_here will be the maximum of either
        // the current node's value or the current node's
        // value added with the max_ending_here
        // for the previous node
        max_ending_here = Math.max(head.data,
                            max_ending_here + head.data);
 
        // Update the maximum sum so far
        max_so_far = Math.max(max_ending_here, max_so_far);
 
        // Get to the next node
        head = head.next;
    }
 
    // Return the maximum sum so far
    return max_so_far;
}
 
// Driver code
public static void main(String[] args)
{
    // Create the linked list
    Node head = null;
    head = append(head, -2);
    head = append(head, -3);
    head = append(head, 4);
    head = append(head, -1);
    head = append(head, -2);
    head = append(head, 1);
    head = append(head, 5);
    head = append(head, -3);
 
    System.out.print(MaxContiguousNodeSum(head));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
  
# A linked list node
class Node:
     
    def __init__(self, data):
         
        self.data = data
        self.next = None
  
# Given a reference (pointer to pointer)
# to the head of a list and an int,
# appends a new node at the end
def append(head_ref, new_data):
     
    # Allocate node
    new_node = Node(new_data)
  
    last = head_ref # used in step 5
  
    # This new node is going to be
    # the last node, so make next of
    # it as None
    new_node.next = None
  
     
    # If the Linked List is empty,
    # then make the new node as head
    if (head_ref == None):
        head_ref = new_node
        return head_ref
  
    # Else traverse till the last node
    while (last.next != None):
        last = last.next
  
    # Change the next of last node
    last.next = new_node
    return head_ref
 
# Function to return the maximum contiguous
# nodes sum in the given linked list
def MaxContiguousNodeSum(head):
  
    # If the list is empty
    if (head == None):
        return 0
  
    # If the list contains a single element
    if (head.next == None):
        return head.data
  
    # max_ending_here will store the maximum
    # sum ending at the current node, currently
    # it will be initialised to the maximum
    # sum ending at the first node which is
    # the first node's value
    max_ending_here = head.data
  
    # max_so_far will store the maximum sum of
    # contiguous nodes so far which is the required
    # answer at the end of the linked list traversal
    max_so_far = head.data
  
    # Starting from the second node
    head = head.next
  
    # While there are nodes in linked list
    while (head != None):
  
        # max_ending_here will be the maximum of either
        # the current node's value or the current node's
        # value added with the max_ending_here
        # for the previous node
        max_ending_here = max(head.data,
                              max_ending_here +
                              head.data)
  
        # Update the maximum sum so far
        max_so_far = max(max_ending_here,
                         max_so_far)
  
        # Get to the next node
        head = head.next
  
    # Return the maximum sum so far
    return max_so_far
  
# Driver code
if __name__=='__main__':
     
    # Create the linked list
    head = None
    head = append(head, -2)
    head = append(head, -3)
    head = append(head, 4)
    head = append(head, -1)
    head = append(head, -2)
    head = append(head, 1)
    head = append(head, 5)
    head = append(head, -3)
  
    print(MaxContiguousNodeSum(head))
 
# This code is contributed by rutvik_56


C#




// C# implementation of the approach
using System;
class GFG
{
 
// A linked list node
public class Node
{
    public int data;
    public Node next;
};
 
/* Given a reference (pointer to pointer) to the head
of a list and an int, appends a new node at the end */
static Node append(Node head_ref, int new_data)
{
    // Allocate node
    Node new_node = new Node();
 
    Node last = head_ref; /* used in step 5*/
 
    // Put in the data
    new_node.data = new_data;
 
    /* This new node is going to be
    the last node, so make next of
    it as null*/
    new_node.next = null;
 
    /* If the Linked List is empty,
    then make the new node as head */
    if (head_ref == null)
    {
        head_ref = new_node;
        return head_ref;
    }
 
    // Else traverse till the last node
    while (last.next != null)
        last = last.next;
 
    // Change the next of last node
    last.next = new_node;
    return head_ref;
}
 
// Function to return the maximum contiguous
// nodes sum in the given linked list
static int MaxContiguousNodeSum(Node head)
{
 
    // If the list is empty
    if (head == null)
    return 0;
 
    // If the list contains a single element
    if (head.next == null)
        return head.data;
 
    // max_ending_here will store the maximum sum
    // ending at the current node, currently it
    // will be initialised to the maximum sum ending
    // at the first node which is the first node's value
    int max_ending_here = head.data;
 
    // max_so_far will store the maximum sum of
    // contiguous nodes so far which is the required
    // answer at the end of the linked list traversal
    int max_so_far = head.data;
 
    // Starting from the second node
    head = head.next;
 
    // While there are nodes in linked list
    while (head != null)
    {
 
        // max_ending_here will be the maximum of either
        // the current node's value or the current node's
        // value added with the max_ending_here
        // for the previous node
        max_ending_here = Math.Max(head.data,
                                   max_ending_here +
                                   head.data);
 
        // Update the maximum sum so far
        max_so_far = Math.Max(max_ending_here,
                              max_so_far);
 
        // Get to the next node
        head = head.next;
    }
 
    // Return the maximum sum so far
    return max_so_far;
}
 
// Driver code
public static void Main(String[] args)
{
    // Create the linked list
    Node head = null;
    head = append(head, -2);
    head = append(head, -3);
    head = append(head, 4);
    head = append(head, -1);
    head = append(head, -2);
    head = append(head, 1);
    head = append(head, 5);
    head = append(head, -3);
 
    Console.Write(MaxContiguousNodeSum(head));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
// Structure of a node of the linked list
 
class Node {
        constructor() {
        this.data = 0;
        this.next = null;
            }
}
 
/* Given a reference (pointer to pointer) to the head
of a list and an int, appends a new node at the end */
function append( head_ref, new_data)
{
    // Allocate node
    var new_node = new Node();
 
    var last = head_ref; /* used in step 5*/
 
    // Put in the data
    new_node.data = new_data;
 
    /* This new node is going to be
    the last node, so make next of
    it as null*/
    new_node.next = null;
 
    /* If the Linked List is empty,
    then make the new node as head */
    if (head_ref == null)
    {
        head_ref = new_node;
        return head_ref;
    }
 
    // Else traverse till the last node
    while (last.next != null)
        last = last.next;
 
    // Change the next of last node
    last.next = new_node;
    return head_ref;
}
 
// Function to return the maximum contiguous
// nodes sum in the given linked list
function MaxContiguousNodeSum( head)
{
 
    // If the list is empty
    if (head == null)
    return 0;
 
    // If the list contains a single element
    if (head.next == null)
        return head.data;
 
    // max_ending_here will store the maximum sum
    // ending at the current node, currently it
    // will be initialised to the maximum sum ending
    // at the first node which is the first node's value
    let max_ending_here = head.data;
 
    // max_so_far will store the maximum sum of
    // contiguous nodes so far which is the required
    // answer at the end of the linked list traversal
    let max_so_far = head.data;
 
    // Starting from the second node
    head = head.next;
 
    // While there are nodes in linked list
    while (head != null)
    {
 
        // max_ending_here will be the maximum of either
        // the current node's value or the current node's
        // value added with the max_ending_here
        // for the previous node
        max_ending_here = Math.max(head.data,
                            max_ending_here + head.data);
 
        // Update the maximum sum so far
        max_so_far = Math.max(max_ending_here, max_so_far);
 
        // Get to the next node
        head = head.next;
    }
 
    // Return the maximum sum so far
    return max_so_far;
}
 
 
// Driver Code
 
// Create the linked list
var head = null;
head = append(head, -2);
head = append(head, -3);
head = append(head, 4);
head = append(head, -1);
head = append(head, -2);
head = append(head, 1);
head = append(head, 5);
head = append(head, -3);
 
document.write(MaxContiguousNodeSum(head));
     
</script>


Output: 

7

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments