Friday, December 27, 2024
Google search engine
HomeData Modelling & AIMaximum size square sub-matrix with all 1s

Maximum size square sub-matrix with all 1s

Given a binary matrix, find out the maximum size square sub-matrix with all 1s. 
For example, consider the below binary matrix. 

maximum-size-square-sub-matrix-with-all-1s

Algorithm: 
Let the given binary matrix be M[R][C]. The idea of the algorithm is to construct an auxiliary size matrix S[][] in which each entry S[i][j] represents the size of the square sub-matrix with all 1s including M[i][j] where M[i][j] is the rightmost and bottom-most entry in sub-matrix. 

1) Construct a sum matrix S[R][C] for the given M[R][C].
     a)    Copy first row and first columns as it is from M[][] to S[][]
     b)    For other entries, use following expressions to construct S[][]
         If M[i][j] is 1 then
            S[i][j] = min(S[i][j-1], S[i-1][j], S[i-1][j-1]) + 1
         Else /*If M[i][j] is 0*/
            S[i][j] = 0
2) Find the maximum entry in S[R][C]
3) Using the value and coordinates of maximum entry in S[i], print 
   sub-matrix of M[][]

For the given M[R][C] in the above example, constructed S[R][C] would be:

   0  1  1  0  1
   1  1  0  1  0
   0  1  1  1  0
   1  1  2  2  0
   1  2  2  3  1
   0  0  0  0  0

The value of the maximum entry in the above matrix is 3 and the coordinates of the entry are (4, 3). Using the maximum value and its coordinates, we can find out the required sub-matrix. 

C++




// C++ code for Maximum size square
// sub-matrix with all 1s
#include <bits/stdc++.h>
#define bool int
#define R 6
#define C 5
using namespace std;
 
void printMaxSubSquare(bool M[R][C])
{
    int i, j;
    int S[R][C];
    int max_of_s, max_i, max_j;
 
    /* Set first column of S[][]*/
    for (i = 0; i < R; i++)
        S[i][0] = M[i][0];
 
    /* Set first row of S[][]*/
    for (j = 0; j < C; j++)
        S[0][j] = M[0][j];
 
    /* Construct other entries of S[][]*/
    for (i = 1; i < R; i++) {
        for (j = 1; j < C; j++) {
            if (M[i][j] == 1)
                S[i][j]
                    = min({ S[i][j - 1], S[i - 1][j],
                            S[i - 1][j - 1] })
                      + 1; // better of using min in case of
                           // arguments more than 2
            else
                S[i][j] = 0;
        }
    }
 
    /* Find the maximum entry, and indexes of maximum entry
        in S[][] */
    max_of_s = S[0][0];
    max_i = 0;
    max_j = 0;
    for (i = 0; i < R; i++) {
        for (j = 0; j < C; j++) {
            if (max_of_s < S[i][j]) {
                max_of_s = S[i][j];
                max_i = i;
                max_j = j;
            }
        }
    }
 
    cout << "Maximum size sub-matrix is: \n";
    for (i = max_i; i > max_i - max_of_s; i--) {
        for (j = max_j; j > max_j - max_of_s; j--) {
            cout << M[i][j] << " ";
        }
        cout << "\n";
    }
}
 
/* Driver code */
int main()
{
    bool M[R][C] = { { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
                     { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
                     { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 } };
 
    printMaxSubSquare(M);
}
 
// This code is contributed by rathbhupendra


C




// C code for Maximum size square
// sub-matrix with all 1s
#include <stdio.h>
#define bool int
#define R 6
#define C 5
 
void printMaxSubSquare(bool M[R][C])
{
    int i, j;
    int S[R][C];
    int max_of_s, max_i, max_j;
 
    /* Set first column of S[][]*/
    for (i = 0; i < R; i++)
        S[i][0] = M[i][0];
 
    /* Set first row of S[][]*/
    for (j = 0; j < C; j++)
        S[0][j] = M[0][j];
 
    /* Construct other entries of S[][]*/
    for (i = 1; i < R; i++) {
        for (j = 1; j < C; j++) {
            if (M[i][j] == 1)
                S[i][j] = min(S[i][j - 1], S[i - 1][j],
                              S[i - 1][j - 1])
                          + 1;
            else
                S[i][j] = 0;
        }
    }
 
    /* Find the maximum entry, and indexes of maximum entry
        in S[][] */
    max_of_s = S[0][0];
    max_i = 0;
    max_j = 0;
    for (i = 0; i < R; i++) {
        for (j = 0; j < C; j++) {
            if (max_of_s < S[i][j]) {
                max_of_s = S[i][j];
                max_i = i;
                max_j = j;
            }
        }
    }
 
    printf("Maximum size sub-matrix is: \n");
    for (i = max_i; i > max_i - max_of_s; i--) {
        for (j = max_j; j > max_j - max_of_s; j--) {
            printf("%d ", M[i][j]);
        }
        printf("\n");
    }
}
 
/* UTILITY FUNCTIONS */
/* Function to get minimum of three values */
int min(int a, int b, int c)
{
    int m = a;
    if (m > b)
        m = b;
    if (m > c)
        m = c;
    return m;
}
 
/* Driver function to test above functions */
int main()
{
    bool M[R][C] = { { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
                     { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
                     { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 } };
 
    printMaxSubSquare(M);
    getchar();
}


Java




// JAVA Code for Maximum size square
// sub-matrix with all 1s
public class GFG {
    // method for Maximum size square sub-matrix with all 1s
    static void printMaxSubSquare(int M[][])
    {
        int i, j;
        int R = M.length; // no of rows in M[][]
        int C = M[0].length; // no of columns in M[][]
        int S[][] = new int[R][C];
 
        int max_of_s, max_i, max_j;
 
        /* Set first column of S[][]*/
        for (i = 0; i < R; i++)
            S[i][0] = M[i][0];
 
        /* Set first row of S[][]*/
        for (j = 0; j < C; j++)
            S[0][j] = M[0][j];
 
        /* Construct other entries of S[][]*/
        for (i = 1; i < R; i++) {
            for (j = 1; j < C; j++) {
                if (M[i][j] == 1)
                    S[i][j] = Math.min(
                                  S[i][j - 1],
                                  Math.min(S[i - 1][j],
                                           S[i - 1][j - 1]))
                              + 1;
                else
                    S[i][j] = 0;
            }
        }
 
        /* Find the maximum entry, and indexes of maximum
           entry in S[][] */
        max_of_s = S[0][0];
        max_i = 0;
        max_j = 0;
        for (i = 0; i < R; i++) {
            for (j = 0; j < C; j++) {
                if (max_of_s < S[i][j]) {
                    max_of_s = S[i][j];
                    max_i = i;
                    max_j = j;
                }
            }
        }
 
        System.out.println("Maximum size sub-matrix is: ");
        for (i = max_i; i > max_i - max_of_s; i--) {
            for (j = max_j; j > max_j - max_of_s; j--) {
                System.out.print(M[i][j] + " ");
            }
            System.out.println();
        }
    }
 
    // Driver program
    public static void main(String[] args)
    {
        int M[][]
            = { { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
                { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
                { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 } };
 
        printMaxSubSquare(M);
    }
}


Python3




# Python3 code for Maximum size
# square sub-matrix with all 1s
 
def printMaxSubSquare(M):
    R = len(M)  # no. of rows in M[][]
    C = len(M[0])  # no. of columns in M[][]
 
    S = []
    for i in range(R):
        temp = []
        for j in range(C):
            if i == 0 or j == 0:
                temp += M[i][j],
            else:
                temp += 0,
        S += temp,
    # here we have set the first row and first column of S same as input matrix, other entries are set to 0
 
    # Update other entries
    for i in range(1, R):
        for j in range(1, C):
            if (M[i][j] == 1):
                S[i][j] = min(S[i][j-1], S[i-1][j],
                              S[i-1][j-1]) + 1
            else:
                S[i][j] = 0
 
    # Find the maximum entry and
    # indices of maximum entry in S[][]
    max_of_s = S[0][0]
    max_i = 0
    max_j = 0
    for i in range(R):
        for j in range(C):
            if (max_of_s < S[i][j]):
                max_of_s = S[i][j]
                max_i = i
                max_j = j
 
    print("Maximum size sub-matrix is: ")
    for i in range(max_i, max_i - max_of_s, -1):
        for j in range(max_j, max_j - max_of_s, -1):
            print(M[i][j], end=" ")
        print("")
 
 
# Driver Program
M = [[0, 1, 1, 0, 1],
     [1, 1, 0, 1, 0],
     [0, 1, 1, 1, 0],
     [1, 1, 1, 1, 0],
     [1, 1, 1, 1, 1],
     [0, 0, 0, 0, 0]]
 
printMaxSubSquare(M)
 
# This code is contributed by Soumen Ghosh


C#




// C# Code for Maximum size square
// sub-matrix with all 1s
 
using System;
 
public class GFG {
    // method for Maximum size square sub-matrix with all 1s
    static void printMaxSubSquare(int[, ] M)
    {
        int i, j;
        // no of rows in M[,]
        int R = M.GetLength(0);
        // no of columns in M[,]
        int C = M.GetLength(1);
        int[, ] S = new int[R, C];
 
        int max_of_s, max_i, max_j;
 
        /* Set first column of S[,]*/
        for (i = 0; i < R; i++)
            S[i, 0] = M[i, 0];
 
        /* Set first row of S[][]*/
        for (j = 0; j < C; j++)
            S[0, j] = M[0, j];
 
        /* Construct other entries of S[,]*/
        for (i = 1; i < R; i++) {
            for (j = 1; j < C; j++) {
                if (M[i, j] == 1)
                    S[i, j] = Math.Min(
                                  S[i, j - 1],
                                  Math.Min(S[i - 1, j],
                                           S[i - 1, j - 1]))
                              + 1;
                else
                    S[i, j] = 0;
            }
        }
 
        /* Find the maximum entry, and indexes of
            maximum entry in S[,] */
        max_of_s = S[0, 0];
        max_i = 0;
        max_j = 0;
        for (i = 0; i < R; i++) {
            for (j = 0; j < C; j++) {
                if (max_of_s < S[i, j]) {
                    max_of_s = S[i, j];
                    max_i = i;
                    max_j = j;
                }
            }
        }
 
        Console.WriteLine("Maximum size sub-matrix is: ");
        for (i = max_i; i > max_i - max_of_s; i--) {
            for (j = max_j; j > max_j - max_of_s; j--) {
                Console.Write(M[i, j] + " ");
            }
            Console.WriteLine();
        }
    }
 
    // Driver program
    public static void Main()
    {
        int[, ] M = new int[6, 5] {
            { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
            { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
            { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 }
        };
 
        printMaxSubSquare(M);
    }
}


PHP




<?php
// PHP code for Maximum size square
// sub-matrix with all 1s
 
function printMaxSubSquare($M, $R, $C)
{
    $S = array(array()) ;
 
    /* Set first column of S[][]*/
    for($i = 0; $i < $R; $i++)
        $S[$i][0] = $M[$i][0];
     
    /* Set first row of S[][]*/
    for($j = 0; $j < $C; $j++)
        $S[0][$j] = $M[0][$j];
         
    /* Construct other entries of S[][]*/
    for($i = 1; $i < $R; $i++)
    {
        for($j = 1; $j < $C; $j++)
        {
            if($M[$i][$j] == 1)
                $S[$i][$j] = min($S[$i][$j - 1],
                                 $S[$i - 1][$j],
                                 $S[$i - 1][$j - 1]) + 1;
            else
                $S[$i][$j] = 0;
        }
    }
     
    /* Find the maximum entry, and indexes
    of maximum entry in S[][] */
    $max_of_s = $S[0][0];
    $max_i = 0;
    $max_j = 0;
    for($i = 0; $i < $R; $i++)
    {
        for($j = 0; $j < $C; $j++)
        {
        if($max_of_s < $S[$i][$j])
        {
            $max_of_s = $S[$i][$j];
            $max_i = $i;
            $max_j = $j;
        }
        }            
    }
     
    printf("Maximum size sub-matrix is: \n");
    for($i = $max_i;
        $i > $max_i - $max_of_s; $i--)
    {
        for($j = $max_j;
            $j > $max_j - $max_of_s; $j--)
        {
            echo $M[$i][$j], " " ;
        }
        echo "\n" ;
    }
}
 
# Driver code
$M = array(array(0, 1, 1, 0, 1),
           array(1, 1, 0, 1, 0),
           array(0, 1, 1, 1, 0),
           array(1, 1, 1, 1, 0),
           array(1, 1, 1, 1, 1),
           array(0, 0, 0, 0, 0));
     
$R = 6 ;
$C = 5 ;        
printMaxSubSquare($M, $R, $C);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
// JavaScript code for Maximum size square
// sub-matrix with all 1s
let R = 6;
let C = 5;
 
function printMaxSubSquare(M) {
    let i,j;
    let S = [];
 
for ( var y = 0; y < R; y++ ) {
    S[ y ] = [];
    for ( var x = 0; x < C; x++ ) {
        S[ y ][ x ] = 0;
    }
}
    let max_of_s, max_i, max_j;
     
    /* Set first column of S[][]*/
    for(i = 0; i < R; i++)
        S[i][0] = M[i][0];
     
    /* Set first row of S[][]*/
    for(j = 0; j < C; j++)
        S[0][j] = M[0][j];
         
    /* Construct other entries of S[][]*/
    for(i = 1; i < R; i++)
    {
        for(j = 1; j < C; j++)
        {
            if(M[i][j] == 1)
                S[i][j] = Math.min(S[i][j-1],Math.min( S[i-1][j],
                                S[i-1][j-1])) + 1;
            else
                S[i][j] = 0;
        }
    }
     
    /* Find the maximum entry, and indexes of maximum entry
        in S[][] */
    max_of_s = S[0][0]; max_i = 0; max_j = 0;
    for(i = 0; i < R; i++)
    {
        for(j = 0; j < C; j++)
        {
            if(max_of_s < S[i][j])
            {
                max_of_s = S[i][j];
                max_i = i;
                max_j = j;
            }
        }            
    }
 
    document.write("Maximum size sub-matrix is: <br>");
    for(i = max_i; i > max_i - max_of_s; i--)
    {
        for(j = max_j; j > max_j - max_of_s; j--)
        {
            document.write( M[i][j] , " ");
        }
        document.write("<br>");
    }
}
 
 
/* Driver code */
let M = [[0, 1, 1, 0, 1],
         [1, 1, 0, 1, 0],
         [0, 1, 1, 1, 0],
         [1, 1, 1, 1, 0],
         [1, 1, 1, 1, 1],
         [0, 0, 0, 0, 0]];
                     
printMaxSubSquare(M);
</script>


Output

Maximum size sub-matrix is: 
1 1 1 
1 1 1 
1 1 1 

Time Complexity: O(m*n) where m is the number of rows and n is the number of columns in the given matrix. 
Auxiliary Space: O(m*n) where m is the number of rows and n is the number of columns in the given matrix. 
Algorithmic Paradigm: Dynamic Programming

Space Optimized Solution: In order to compute an entry at any position in the matrix we only need the current row and the previous row.

C++




// C++ code for Maximum size square
// sub-matrix with all 1s
// (space optimized solution)
#include <bits/stdc++.h>
 
using namespace std;
 
#define R 6
#define C 5
 
void printMaxSubSquare(bool M[R][C])
{
    int S[2][C], Max = 0;
 
    // set all elements of S to 0 first
    memset(S, 0, sizeof(S));
 
    // Construct the entries
    for (int i = 0; i < R; i++)
        for (int j = 0; j < C; j++) {
 
            // Compute the entry at the current position
            int Entrie = M[i][j];
            if (Entrie)
                if (j)
                    Entrie
                        = 1
                          + min(S[1][j - 1],
                                min(S[0][j - 1], S[1][j]));
 
            // Save the last entry and add the new one
            S[0][j] = S[1][j];
            S[1][j] = Entrie;
 
            // Keep track of the max square length
            Max = max(Max, Entrie);
        }
 
    // Print the square
    cout << "Maximum size sub-matrix is: \n";
    for (int i = 0; i < Max; i++, cout << '\n')
        for (int j = 0; j < Max; j++)
            cout << "1 ";
}
 
// Driver code
int main()
{
    bool M[R][C] = { { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
                     { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
                     { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 } };
 
    printMaxSubSquare(M);
 
    return 0;
 
    // This code is contributed
    // by Gatea David
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
 
    static int R = 6;
    static int C = 5;
 
    static void printMaxSubSquare(int M[][])
    {
        int S[][] = new int[2][C], Max = 0;
 
        // set all elements of S to 0 first
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < C; j++) {
                S[i][j] = 0;
            }
        }
 
        // Construct the entries
        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {
 
                // Compute the entrie at the current
                // position
                int Entrie = M[i][j];
                if (Entrie != 0) {
                    if (j != 0) {
                        Entrie = 1
                                 + Math.min(
                                     S[1][j - 1],
                                     Math.min(S[0][j - 1],
                                              S[1][j]));
                    }
                }
 
                // Save the last entrie and add the new one
                S[0][j] = S[1][j];
                S[1][j] = Entrie;
 
                // Keep track of the max square length
                Max = Math.max(Max, Entrie);
            }
        }
 
        // Print the square
        System.out.print("Maximum size sub-matrix is: \n");
        for (int i = 0; i < Max; i++) {
            for (int j = 0; j < Max; j++) {
                System.out.print("1 ");
            }
            System.out.println();
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int M[][]
            = { { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
                { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
                { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 } };
 
        printMaxSubSquare(M);
    }
}
 
// This code is contributed by code_hunt.


Python3




# Python code for Maximum size square
# sub-matrix with all 1s
# (space optimized solution)
 
R = 6
C = 5
 
 
def printMaxSubSquare(M):
 
    global R, C
    Max = 0
 
    # set all elements of S to 0 first
    S = [[0 for col in range(C)]for row in range(2)]
 
    # Construct the entries
    for i in range(R):
        for j in range(C):
 
            # Compute the entrie at the current position
            Entrie = M[i][j]
            if(Entrie):
                if(j):
                    Entrie = 1 + min(S[1][j - 1], min(S[0][j - 1], S[1][j]))
 
            # Save the last entrie and add the new one
            S[0][j] = S[1][j]
            S[1][j] = Entrie
 
            # Keep track of the max square length
            Max = max(Max, Entrie)
 
    # Print the square
    print("Maximum size sub-matrix is: ")
    for i in range(Max):
        for j in range(Max):
            print("1", end=" ")
        print()
 
 
# Driver code
M = [[0, 1, 1, 0, 1],
     [1, 1, 0, 1, 0],
     [0, 1, 1, 1, 0],
     [1, 1, 1, 1, 0],
     [1, 1, 1, 1, 1],
     [0, 0, 0, 0, 0]]
 
printMaxSubSquare(M)
 
# This code is contributed by shinjanpatra


C#




// C# code to implement the approach
using System;
using System.Numerics;
using System.Collections.Generic;
 
public class GFG {
 
    static int R = 6;
    static int C = 5;
 
    static void printMaxSubSquare(int[, ] M)
    {
        int[, ] S = new int[2, C];
        int Maxx = 0;
 
        // set all elements of S to 0 first
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < C; j++) {
                S[i, j] = 0;
            }
        }
 
        // Construct the entries
        for (int i = 0; i < R; i++) {
            for (int j = 0; j < C; j++) {
 
                // Compute the entrie at the current
                // position
                int Entrie = M[i, j];
                if (Entrie != 0) {
                    if (j != 0) {
                        Entrie = 1
                                 + Math.Min(
                                     S[1, j - 1],
                                     Math.Min(S[0, j - 1],
                                              S[1, j]));
                    }
                }
 
                // Save the last entrie and add the new one
                S[0, j] = S[1, j];
                S[1, j] = Entrie;
 
                // Keep track of the max square length
                Maxx = Math.Max(Maxx, Entrie);
            }
        }
 
        // Print the square
        Console.Write("Maximum size sub-matrix is: \n");
        for (int i = 0; i < Maxx; i++) {
            for (int j = 0; j < Maxx; j++) {
                Console.Write("1 ");
            }
            Console.WriteLine();
        }
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[, ] M
            = { { 0, 1, 1, 0, 1 }, { 1, 1, 0, 1, 0 },
                { 0, 1, 1, 1, 0 }, { 1, 1, 1, 1, 0 },
                { 1, 1, 1, 1, 1 }, { 0, 0, 0, 0, 0 } };
 
        printMaxSubSquare(M);
    }
}


Javascript




<script>
 
// JavaScript code for Maximum size square
// sub-matrix with all 1s
// (space optimized solution)
const R = 6
const C = 5
 
function printMaxSubSquare(M)
{
    let Max = 0
    let S = new Array(2)
   
    // set all elements of S to 0 first
    for(let i=0;i<2;i++){
        S[i] = new Array(C).fill(0)
    }
 
    // Construct the entries
    for (let i = 0; i < R;i++)
        for (let j = 0; j < C;j++){
 
            // Compute the entrie at the current position
            let Entrie = M[i][j];
            if(Entrie)
                if(j)
                    Entrie = 1 + Math.min(S[1][j - 1],
                    Math.min(S[0][j - 1], S[1][j]));
 
            // Save the last entrie and add the new one
            S[0][j] = S[1][j];
            S[1][j] = Entrie;
 
            // Keep track of the max square length
            Max = Math.max(Max, Entrie);
        }
     
    // Print the square
    document.write("Maximum size sub-matrix is: ","</br>")
    for (let i = 0; i < Max; i++){
        for (let j = 0; j < Max;j++)
            document.write("1 ")
        document.write("</br>")
    }
         
}
 
// Driver code
const M = [[0, 1, 1, 0, 1],
                    [1, 1, 0, 1, 0],
                    [0, 1, 1, 1, 0],
                    [1, 1, 1, 1, 0],
                    [1, 1, 1, 1, 1],
                    [0, 0, 0, 0, 0]]
                      
printMaxSubSquare(M)
 
// This code is contributed by shinjanpatra
 
</script>


Output

Maximum size sub-matrix is: 
1 1 1 
1 1 1 
1 1 1 

Time Complexity: O(m*n) where m is the number of rows and n is the number of columns in the given matrix. 
Auxiliary space: O(n) where n is the number of columns in the given matrix. 

Please write comments if you find any bug in the above code/algorithm, or find other ways to solve the same problem

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments