Given an integer K and an array arr[] which denotes the amount that can be stolen, the task is to choose a subset of items such that their total value is less than K to get the bonus amount.
Bonus Amount: The bonus amount will be the maximum value that can be stolen from the set of items for each item stolen.
Bonus Amount = (Max of arr[]) * (No of Items stolen)
Examples:
Input: arr[] = {1, 2, 3, 4, 5}, K = 7
Output: 22
Explanation:
Maximum value that can stolen is – 5.
If the items were stolen are 1, 2, and 4. Then the total sum of stolen value will be less than K.
Therefore, Total Profit
=> Each Item value + Maximum value that can be stolen
=> 1 + 5 + 2 + 5 + 4 + 5 = 22Input: arr[] = {5, 2, 7, 3}, K = 6
Output: 19
Explanation:
Maximum value that can stolen is – 7
If the items stolen are 2 and 3. Then the total sum of stolen value will be less than K.
Therefore, Total Profit
=> Each Item value + Maximum value that can be stolen
=> 2 + 7 + 3 + 7 = 19
Approach: The idea is to use permutation & combinations to choose the elements such that their total sum is less than K. Therefore, considering every possible will result in the maximum profit that can be possible.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // maximum stolen value such that // total stolen value is less than K #include <bits/stdc++.h> using namespace std; // Function to find the maximum // profit from the given values int maxProfit(vector< int > value, int N, int K) { sort(value.begin(), value.end()); int maxval = value[N - 1]; int maxProfit = 0; int curr_val; // Iterating over every // possible permutation do { curr_val = 0; for ( int i = 0; i < N; i++) { curr_val += value[i]; if (curr_val <= K) { maxProfit = max(curr_val + maxval * (i + 1), maxProfit); } } } while (next_permutation( value.begin(), value.end())); return maxProfit; } // Driver Code int main() { int N = 4, K = 6; vector< int > values{5, 2, 7, 3}; // Function Call cout << maxProfit(values, N, K); } |
Java
// Java implementation to find the // maximum stolen value such that // total stolen value is less than K import java.util.*; class GFG{ // Function to find the maximum // profit from the given values static int maxProfit( int []value, int N, int K) { Arrays.sort(value); int maxval = value[N - 1 ]; int maxProfit = 0 ; int curr_val; // Iterating over every // possible permutation do { curr_val = 0 ; for ( int i = 0 ; i < N; i++) { curr_val += value[i]; if (curr_val <= K) { maxProfit = Math.max(curr_val + maxval * (i + 1 ), maxProfit); } } } while (next_permutation(value)); return maxProfit; } static boolean next_permutation( int [] p) { for ( int a = p.length - 2 ; a >= 0 ; --a) if (p[a] < p[a + 1 ]) for ( int b = p.length - 1 ;; --b) if (p[b] > p[a]) { int t = p[a]; p[a] = p[b]; p[b] = t; for (++a, b = p.length - 1 ; a < b; ++a, --b) { t = p[a]; p[a] = p[b]; p[b] = t; } return true ; } return false ; } // Driver Code public static void main(String[] args) { int N = 4 , K = 6 ; int []values = { 5 , 2 , 7 , 3 }; // Function Call System.out.print(maxProfit(values, N, K)); } } // This code is contributed by shikhasingrajput |
Python3
# Python3 implementation to find the # maximum stolen value such that # total stolen value is less than K # Function to find the maximum # profit from the given values def maxProfit(value, N, K): value.sort() maxval = value[N - 1 ] maxProfit = 0 # Iterating over every # possible permutation while True : curr_val = 0 for i in range (N): curr_val + = value[i] if (curr_val < = K): maxProfit = max (curr_val + maxval * (i + 1 ), maxProfit) if not next_permutation(value): break return maxProfit def next_permutation(p): for a in range ( len (p) - 2 , - 1 , - 1 ): if p[a] < p[a + 1 ]: b = len (p) - 1 while True : if p[b] > p[a]: t = p[a] p[a] = p[b] p[b] = t a + = 1 b = len (p) - 1 while a < b: t = p[a] p[a] = p[b] p[b] = t a + = 1 b - = 1 return True b - = 1 return False # Driver Code N, K = 4 , 6 values = [ 5 , 2 , 7 , 3 ] # Function Call print (maxProfit(values, N, K)) # This code is contributed by divyesh072019 |
C#
// C# implementation to find the // maximum stolen value such that // total stolen value is less than K using System; class GFG{ // Function to find the maximum // profit from the given values static int maxProfit( int [] value, int N, int K) { Array.Sort(value); int maxval = value[N - 1]; int maxProfit = 0; int curr_val; // Iterating over every // possible permutation do { curr_val = 0; for ( int i = 0; i < N; i++) { curr_val += value[i]; if (curr_val <= K) { maxProfit = Math.Max(curr_val + maxval * (i + 1), maxProfit); } } } while (next_permutation(value)); return maxProfit; } static bool next_permutation( int [] p) { for ( int a = p.Length - 2; a >= 0; --a) if (p[a] < p[a + 1]) for ( int b = p.Length - 1;; --b) if (p[b] > p[a]) { int t = p[a]; p[a] = p[b]; p[b] = t; for (++a, b = p.Length - 1; a < b; ++a, --b) { t = p[a]; p[a] = p[b]; p[b] = t; } return true ; } return false ; } // Driver code static void Main() { int N = 4, K = 6; int [] values = { 5, 2, 7, 3 }; // Function call Console.WriteLine(maxProfit(values, N, K)); } } // This code is contributed by divyeshrabadiya07 |
Javascript
<script> // Javascript implementation to find the // maximum stolen value such that // total stolen value is less than K // Function to find the maximum // profit from the given values function maxProfit(value, N, K) { value.sort(); let maxval = value[N - 1]; let maxProfit = 0; let curr_val; // Iterating over every // possible permutation do { curr_val = 0; for (let i = 0; i < N; i++) { curr_val += value[i]; if (curr_val <= K) { maxProfit = Math.max(curr_val + maxval * (i + 1), maxProfit); } } } while (next_permutation(value)); return maxProfit; } function next_permutation(p) { for (let a = p.length - 2; a >= 0; --a) if (p[a] < p[a + 1]) for (let b = p.length - 1;; --b) if (p[b] > p[a]) { let t = p[a]; p[a] = p[b]; p[b] = t; for (++a, b = p.length - 1; a < b; ++a, --b) { t = p[a]; p[a] = p[b]; p[b] = t; } return true ; } return false ; } let N = 4, K = 6; let values = [ 5, 2, 7, 3 ]; // Function call document.write(maxProfit(values, N, K)); </script> |
19
Time Complexity: O(N2)
Auxiliary space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!