Saturday, January 18, 2025
Google search engine
HomeData Modelling & AIMaximum profit such that total stolen value is less than K to...

Maximum profit such that total stolen value is less than K to get bonus

Given an integer K and an array arr[] which denotes the amount that can be stolen, the task is to choose a subset of items such that their total value is less than K to get the bonus amount. 

Bonus Amount: The bonus amount will be the maximum value that can be stolen from the set of items for each item stolen. 
Bonus Amount = (Max of arr[]) * (No of Items stolen) 
 

Examples:  

Input: arr[] = {1, 2, 3, 4, 5}, K = 7 
Output: 22 
Explanation: 
Maximum value that can stolen is – 5. 
If the items were stolen are 1, 2, and 4. Then the total sum of stolen value will be less than K. 
Therefore, Total Profit 
=> Each Item value + Maximum value that can be stolen 
=> 1 + 5 + 2 + 5 + 4 + 5 = 22 

Input: arr[] = {5, 2, 7, 3}, K = 6 
Output: 19 
Explanation: 
Maximum value that can stolen is – 7 
If the items stolen are 2 and 3. Then the total sum of stolen value will be less than K. 
Therefore, Total Profit 
=> Each Item value + Maximum value that can be stolen 
=> 2 + 7 + 3 + 7 = 19 

Approach: The idea is to use permutation & combinations to choose the elements such that their total sum is less than K. Therefore, considering every possible will result in the maximum profit that can be possible.

Below is the implementation of the above approach: 

C++




// C++ implementation to find the
// maximum stolen value such that
// total stolen value is less than K
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find the maximum
// profit from the given values
int maxProfit(vector<int> value,
                         int N, int K)
{
    sort(value.begin(), value.end());
    int maxval = value[N - 1];
    int maxProfit = 0;
    int curr_val;
     
    // Iterating over every
    // possible permutation
    do {
        curr_val = 0;
        for (int i = 0; i < N; i++) {
            curr_val += value[i];
            if (curr_val <= K) {
                maxProfit = max(curr_val +
                  maxval * (i + 1), maxProfit);
            }
        }
    } while (next_permutation(
        value.begin(), value.end()));
    return maxProfit;
}
 
// Driver Code
int main()
{
    int N = 4, K = 6;
    vector<int> values{5, 2, 7, 3};
     
    // Function Call
    cout << maxProfit(values, N, K);
}


Java




// Java implementation to find the
// maximum stolen value such that
// total stolen value is less than K
import java.util.*;
class GFG{
  
// Function to find the maximum
// profit from the given values
static int maxProfit(int []value,
                     int N, int K)
{
    Arrays.sort(value);
    int maxval = value[N - 1];
    int maxProfit = 0;
    int curr_val;
      
    // Iterating over every
    // possible permutation
    do {
        curr_val = 0;
        for (int i = 0; i < N; i++) {
            curr_val += value[i];
            if (curr_val <= K) {
                maxProfit = Math.max(curr_val +
                                     maxval * (i + 1),
                                     maxProfit);
            }
        }
    } while (next_permutation(value));
    return maxProfit;
}
static boolean next_permutation(int[] p) {
      for (int a = p.length - 2; a >= 0; --a)
        if (p[a] < p[a + 1])
          for (int b = p.length - 1;; --b)
            if (p[b] > p[a]) {
              int t = p[a];
              p[a] = p[b];
              p[b] = t;
              for (++a, b = p.length - 1; a < b; ++a, --b) {
                t = p[a];
                p[a] = p[b];
                p[b] = t;
              }
              return true;
            }
      return false;
    }
   
// Driver Code
public static void main(String[] args)
{
    int N = 4, K = 6;
    int []values = {5, 2, 7, 3};
      
    // Function Call
    System.out.print(maxProfit(values, N, K));
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python3 implementation to find the
# maximum stolen value such that
# total stolen value is less than K
 
# Function to find the maximum
# profit from the given values
def maxProfit(value, N, K):
     
    value.sort()
    maxval = value[N - 1]
    maxProfit = 0
     
    # Iterating over every
    # possible permutation
    while True:
        curr_val = 0
        for i in range(N):
            curr_val += value[i]
             
            if (curr_val <= K):
                maxProfit = max(curr_val + maxval *
                                      (i + 1), maxProfit)
                                       
        if not next_permutation(value):
            break
     
    return maxProfit
 
def next_permutation(p):
     
    for a in range(len(p) - 2, -1, -1):
        if p[a] < p[a + 1]:
            b = len(p) - 1
             
            while True:
                if p[b] > p[a]:
                    t = p[a]
                    p[a] = p[b]
                    p[b] = t
                     
                    a += 1
                    b = len(p) - 1
                     
                    while a < b:
                        t = p[a]
                        p[a] = p[b]
                        p[b] = t
                         
                        a += 1
                        b -= 1
                         
                    return True
                     
                b -= 1
     
    return False
     
# Driver Code 
N, K = 4, 6
values = [ 5, 2, 7, 3 ]
 
# Function Call
print(maxProfit(values, N, K))
 
# This code is contributed by divyesh072019


C#




// C# implementation to find the
// maximum stolen value such that
// total stolen value is less than K
using System;
 
class GFG{
     
// Function to find the maximum
// profit from the given values
static int maxProfit(int[] value,
                     int N, int K)
{
    Array.Sort(value);
    int maxval = value[N - 1];
    int maxProfit = 0;
    int curr_val;
       
    // Iterating over every
    // possible permutation
    do
    {
        curr_val = 0;
        for(int i = 0; i < N; i++)
        {
            curr_val += value[i];
            if (curr_val <= K)
            {
                maxProfit = Math.Max(curr_val +
                                     maxval * (i + 1),
                                     maxProfit);
            }
        }
    } while (next_permutation(value));
    return maxProfit;
}
 
static bool next_permutation(int[] p)
{
    for(int a = p.Length - 2; a >= 0; --a)
        if (p[a] < p[a + 1])
            for(int b = p.Length - 1;; --b)
                if (p[b] > p[a])
                {
                    int t = p[a];
                    p[a] = p[b];
                    p[b] = t;
                       
                    for(++a, b = p.Length - 1;
                            a < b; ++a, --b)
                    {
                        t = p[a];
                        p[a] = p[b];
                        p[b] = t;
                    }
                    return true;
                }
    return false;
}
 
// Driver code  
static void Main()
{
    int N = 4, K = 6;
    int[] values = { 5, 2, 7, 3 };
   
    // Function call
    Console.WriteLine(maxProfit(values, N, K));
}
}
 
// This code is contributed by divyeshrabadiya07


Javascript




<script>
 
    // Javascript implementation to find the
    // maximum stolen value such that
    // total stolen value is less than K
     
    // Function to find the maximum
    // profit from the given values
    function maxProfit(value, N, K)
    {
        value.sort();
        let maxval = value[N - 1];
        let maxProfit = 0;
        let curr_val;
 
        // Iterating over every
        // possible permutation
        do
        {
            curr_val = 0;
            for(let i = 0; i < N; i++)
            {
                curr_val += value[i];
                if (curr_val <= K)
                {
                    maxProfit = Math.max(curr_val +
                                         maxval * (i + 1),
                                         maxProfit);
                }
            }
        } while (next_permutation(value));
        return maxProfit;
    }
 
    function next_permutation(p)
    {
        for(let a = p.length - 2; a >= 0; --a)
            if (p[a] < p[a + 1])
                for(let b = p.length - 1;; --b)
                    if (p[b] > p[a])
                    {
                        let t = p[a];
                        p[a] = p[b];
                        p[b] = t;
 
                        for(++a, b = p.length - 1;
                                a < b; ++a, --b)
                        {
                            t = p[a];
                            p[a] = p[b];
                            p[b] = t;
                        }
                        return true;
                    }
        return false;
    }
     
    let N = 4, K = 6;
    let values = [ 5, 2, 7, 3 ];
    
    // Function call
    document.write(maxProfit(values, N, K));
 
</script>


Output: 

19

 

Time Complexity: O(N2
Auxiliary space: O(N)
 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments