Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximum possible XOR of every element in an array with another array

Maximum possible XOR of every element in an array with another array

Two arrays A and B consisting of N elements are given. The task is to compute the maximum possible XOR of every element in array A with array B.

Examples:  

Input :
A : 7 3 9 12
B : 1 3 5 2
Output : 6 6 12 15
Explanation : 1 xor 7 = 6, 5 xor 3 = 6, 5
xor 9 = 12, 3 xor 12 = 15.

A naive approach to solve this problem would be to check every element of array A with every other element of array B and print the maximum xor.

C++




// C++ code to find the maximum possible X-OR of
// every array element with another array
#include<bits/stdc++.h>
using namespace std;
  
int max_xor(int A[],int B[],int N)
{
    // Variable to store the maximum xor
    int maximum;
      
    // Traversing for every element of 
    // first array 
    for(int i=0;i<N;i++)
    {
        maximum=INT_MIN;
          
        for(int j=0;j<N;j++)
        {
            maximum=max(maximum,A[i]^B[j]);
        }
          
        cout<<maximum<<endl;
    }
  
}
  
// Driver code
int main()
{
    int A[] = {7, 3, 9, 12};
    int B[] = {1, 3, 5, 2};
      
    int N = sizeof(A)/sizeof(A[0]);
      
    max_xor(A, B, N);
      
    return 0;
}
  
// This code is contributed by Utkarsh Kumar.


Java




// Java code to find the maximum possible X-OR of
// every array element with another array
import java.io.*;
  
class GFG {
  
static void max_xor(int A[],int B[],int N)
{
    // Variable to store the maximum xor
    int maximum;
      
    // Traversing for every element of 
    // first array 
    for(int i=0;i<N;i++)
    {
        maximum=Integer.MIN_VALUE;
          
        for(int j=0;j<N;j++)
        {
            maximum=Math.max(maximum,A[i]^B[j]);
        }
          
        System.out.println(maximum);
    }
  
}
  
// Driver code
public static void main (String[] args)
{
    int A[] = {7, 3, 9, 12};
    int B[] = {1, 3, 5, 2};
      
    int N = A.length;
      
    max_xor(A, B, N);
}
}
  
// This code is contributed by Vaibhav


Python3




# Python code to find the maximum possible X-OR of
# every array element with another array
def max_xor(A, B, N):
    
    # Variable to store the maximum xor
    maximum = -float('inf')
  
    # Traversing for every element of first array
    for i in range(N):
        maximum = -float('inf')
        for j in range(N):
            maximum = max(maximum, A[i] ^ B[j])
        print(maximum)
  
# Driver code
if __name__ == '__main__':
    A = [7, 3, 9, 12]
    B = [1, 3, 5, 2]
    N = len(A)
    max_xor(A, B, N)


C#




// C# code to find the maximum possible X-OR of
// every array element with another array
using System;
  
class Program {
    static int MaxXOR(int[] A, int[] B, int N)
    {
        // Variable to store the maximum xor
        int maximum;
        // Traversing for every element of
        // first array
        for (int i = 0; i < N; i++) {
            maximum = int.MinValue;
  
            for (int j = 0; j < N; j++) {
                maximum = Math.Max(maximum, A[i] ^ B[j]);
            }
  
            Console.WriteLine(maximum);
        }
  
        return 0;
    }
  
    // Driver code
    static void Main()
    {
        int[] A = { 7, 3, 9, 12 };
        int[] B = { 1, 3, 5, 2 };
  
        int N = A.Length;
  
        MaxXOR(A, B, N);
    }
}
// This code is contributed by sarojmcy2e


Javascript




// Function to find the maximum possible XOR of every element in array A with another element in array B
function max_xor(A, B) {
    // Variable to store the maximum xor
    let maximum;
  
    // Traversing for every element of first array 
    for (let i = 0; i < A.length; i++) {
        maximum = Number.MIN_SAFE_INTEGER;
  
        for (let j = 0; j < B.length; j++) {
            maximum = Math.max(maximum, A[i] ^ B[j]);
        }
  
        console.log(maximum);
    }
}
  
// Example usage
let A = [7, 3, 9, 12];
let B = [1, 3, 5, 2];
  
max_xor(A, B);


Output

6
6
12
15

Time Complexity : O(n^2)

Space Complexity : O(1)

An efficient solution is to use Trie Data Structure

We maintain a Trie for the binary representation of all elements in array B. 
Now, for every element of A, we find the maximum xor in trie. 
Let's say our number A[i] is {b1, b2...bn}, where b1, b2...bn are binary bits. We start from b1. 
Now for the xor to be maximum, we'll try to make most significant bit 1 after performing 
the xor. So, if b1 is 0, we'll need a 1 and vice versa. In the trie, we go to the required 
bit side. If favourable option is not there, we'll go other side. Doing this all over, 
we'll get the maximum XOR possible.

Below is the implementation  

C++




// C++ code to find the maximum possible X-OR of
// every array element with another array
#include<bits/stdc++.h>
using namespace std;
  
// Structure of Trie DS
struct trie
{
    int value;
    trie *child[2];
};
  
// Function to initialise a Trie Node
trie * get()
{
    trie * root = new trie;
    root -> value = 0;
    root -> child[0] = NULL;
    root -> child[1] = NULL;
    return root;
}
  
// Computing max xor
int max_xor(trie * root, int key)
{
    trie * temp = root;
      
    // Checking for all bits in integer range
    for (int i = 31; i >= 0; i--)
    {
        // Current bit in the number
        bool current_bit = ( key & ( 1 << i) );
   
        // Traversing Trie for different bit, if found
        if (temp -> child[1 - current_bit] != NULL)
            temp = temp -> child[1 - current_bit];
   
        // Traversing Trie for same bit
        else
            temp = temp -> child[current_bit];
    }
   
    // Returning xor value of maximum bit difference 
    // value. Thus, we get maximum xor value
    return (key ^ temp -> value);
}
  
// Inserting B[] in Trie
void insert(trie * root, int key)
{
    trie * temp = root;
      
    // Storing 31 bits as integer representation
    for (int i = 31; i >= 0; i--)
    {
        // Current bit in the number
        bool current_bit = key & (1 << i);
          
        // New node required
        if (temp -> child[current_bit] == NULL)        
            temp -> child[current_bit] = get();
  
        // Traversing in Trie
        temp = temp -> child[current_bit];
    }
    // Assigning value to the leaf Node
    temp -> value = key;
}
  
int main()
{
    int A[] = {7, 3, 9, 12};
    int B[] = {1, 3, 5, 2};
      
    int N = sizeof(A)/sizeof(A[0]);
      
    // Forming Trie for B[]
    trie * root = get();
    for (int i = 0; i < N; i++)
        insert(root, B[i]);
      
    for (int i = 0; i < N; i++)
        cout << max_xor(root, A[i]) << endl;
      
    return 0;
}


Java




// Java code to find the maximum possible X-OR of
// every array element with another array
import java.util.*;
  
class GFG
{
  
// Structure of Trie DS
static class trie
{
    int value;
    trie []child = new trie[2];
};
  
// Function to initialise a Trie Node
static trie get()
{
    trie root = new trie();
    root.value = 0;
    root.child[0] = null;
    root.child[1] = null;
    return root;
}
  
// Computing max xor
static int max_xor(trie root, int key)
{
    trie temp = root;
      
    // Checking for all bits in integer range
    for (int i = 31; i >= 0; i--)
    {
        // Current bit in the number
        int current_bit = (key & (1 << i));
        if(current_bit > 0)
            current_bit = 1;
              
        // Traversing Trie for different bit, if found
        if (temp.child[1 - current_bit] != null)
            temp = temp.child[1 - current_bit];
  
        // Traversing Trie for same bit
        else
            temp = temp.child[current_bit];
    }
  
    // Returning xor value of maximum bit difference 
    // value. Thus, we get maximum xor value
    return (key ^ temp.value);
}
  
// Inserting B[] in Trie
static void insert(trie root, int key)
{
    trie temp = root;
      
    // Storing 31 bits as integer representation
    for (int i = 31; i >= 0; i--)
    {
        // Current bit in the number
        int current_bit = key & (1 << i);
        if(current_bit > 0)
            current_bit = 1;
              
        //System.out.println(current_bit);
        // New node required
        if (temp.child[current_bit] == null)     
            temp.child[current_bit] = get();
  
        // Traversing in Trie
        temp = temp.child[current_bit];
    }
    // Assigning value to the leaf Node
    temp.value = key;
}
  
// Driver Code
public static void main(String[] args)
{
    int A[] = {7, 3, 9, 12};
    int B[] = {1, 3, 5, 2};
      
    int N = A.length;
      
    // Forming Trie for B[]
    trie root = get();
    for (int i = 0; i < N; i++)
        insert(root, B[i]);
      
    for (int i = 0; i < N; i++)
        System.out.println(max_xor(root, A[i]));
}
}
  
// This code is contributed by 29AjayKumar


Python3




# Python3 code to find the maximum 
# possible X-OR of every array 
# element with another array
  
# Structure of Trie DS
class trie:
      
    def __init__(self, value: int = 0) -> None:
          
        self.value = value
        self.child = [None] * 2
  
# Function to initialise a Trie Node
def get() -> trie:
      
    root = trie()
    root.value = 0
    root.child[0] = None
    root.child[1] = None
      
    return root
  
# Computing max xor
def max_xor(root: trie, key: int) -> int:
  
    temp = root
  
    # Checking for all bits in integer range
    for i in range(31, -1, -1):
  
        # Current bit in the number
        current_bit = (key & (1 << i))
        if (current_bit > 0):
            current_bit = 1
  
        # Traversing Trie for different bit, if found
        if (temp.child[1 - current_bit] != None):
            temp = temp.child[1 - current_bit]
  
        # Traversing Trie for same bit
        else:
            temp = temp.child[current_bit]
  
    # Returning xor value of maximum bit difference
    # value. Thus, we get maximum xor value
    return (key ^ temp.value)
  
# Inserting B[] in Trie
def insert(root: trie, key: int) -> None:
  
    temp = root
  
    # Storing 31 bits as integer representation
    for i in range(31, -1, -1):
  
        # Current bit in the number
        current_bit = key & (1 << i)
        if (current_bit > 0):
            current_bit = 1
  
        # New node required
        if (temp.child[current_bit] == None):
            temp.child[current_bit] = get()
  
        # Traversing in Trie
        temp = temp.child[current_bit]
  
    # Assigning value to the leaf Node
    temp.value = key
  
# Driver Code
if __name__ == "__main__":
      
    A = [ 7, 3, 9, 12 ]
    B = [ 1, 3, 5, 2 ]
  
    N = len(A)
  
    # Forming Trie for B[]
    root = get()
    for i in range(N):
        insert(root, B[i])
  
    for i in range(N):
        print(max_xor(root, A[i]))
  
# This code is contributed by sanjeev2552


C#




// C# code to find the maximum possible X-OR of
// every array element with another array
using System;
      
class GFG
{
  
// Structure of Trie DS
class trie
{
    public int value;
    public trie []child = new trie[2];
};
  
// Function to initialise a Trie Node
static trie get()
{
    trie root = new trie();
    root.value = 0;
    root.child[0] = null;
    root.child[1] = null;
    return root;
}
  
// Computing max xor
static int max_xor(trie root, int key)
{
    trie temp = root;
      
    // Checking for all bits in integer range
    for (int i = 31; i >= 0; i--)
    {
        // Current bit in the number
        int current_bit = (key & (1 << i));
        if(current_bit > 0)
            current_bit = 1;
              
        // Traversing Trie for different bit, if found
        if (temp.child[1 - current_bit] != null)
            temp = temp.child[1 - current_bit];
  
        // Traversing Trie for same bit
        else
            temp = temp.child[current_bit];
    }
  
    // Returning xor value of maximum bit difference 
    // value. Thus, we get maximum xor value
    return (key ^ temp.value);
}
  
// Inserting B[] in Trie
static void insert(trie root, int key)
{
    trie temp = root;
      
    // Storing 31 bits as integer representation
    for (int i = 31; i >= 0; i--)
    {
        // Current bit in the number
        int current_bit = key & (1 << i);
        if(current_bit > 0)
            current_bit = 1;
              
        // System.out.println(current_bit);
        // New node required
        if (temp.child[current_bit] == null)     
            temp.child[current_bit] = get();
  
        // Traversing in Trie
        temp = temp.child[current_bit];
    }
      
    // Assigning value to the leaf Node
    temp.value = key;
}
  
// Driver Code
public static void Main(String[] args)
{
    int []A = {7, 3, 9, 12};
    int []B = {1, 3, 5, 2};
      
    int N = A.Length;
      
    // Forming Trie for B[]
    trie root = get();
    for (int i = 0; i < N; i++)
        insert(root, B[i]);
      
    for (int i = 0; i < N; i++)
        Console.WriteLine(max_xor(root, A[i]));
}
}
  
// This code is contributed by 29AjayKumar


Javascript




<script>
  
// JavaScript code to find the maximum possible X-OR of
// every array element with another array
  
// Structure of Trie DS
class trie
{
    constructor()
    {
        this.value=0;
        this.child = new Array(2);
          
    }
}
  
// Function to initialise a Trie Node    
function get()
{
    let root = new trie();
    root.value = 0;
    root.child[0] = null;
    root.child[1] = null;
    return root;
}
  
// Computing max xor
function max_xor(root,key)
{
    let temp = root;
       
    // Checking for all bits in integer range
    for (let i = 31; i >= 0; i--)
    {
        // Current bit in the number
        let current_bit = (key & (1 << i));
        if(current_bit > 0)
            current_bit = 1;
               
        // Traversing Trie for different bit, if found
        if (temp.child[1 - current_bit] != null)
            temp = temp.child[1 - current_bit];
   
        // Traversing Trie for same bit
        else
            temp = temp.child[current_bit];
    }
   
    // Returning xor value of maximum bit difference
    // value. Thus, we get maximum xor value
    return (key ^ temp.value);
}
  
// Inserting B[] in Trie
function insert(root,key)
{
    let temp = root;
       
    // Storing 31 bits as integer representation
    for (let i = 31; i >= 0; i--)
    {
        // Current bit in the number
        let current_bit = key & (1 << i);
        if(current_bit > 0)
            current_bit = 1;
               
        //System.out.println(current_bit);
        // New node required
        if (temp.child[current_bit] == null)    
            temp.child[current_bit] = get();
   
        // Traversing in Trie
        temp = temp.child[current_bit];
    }
    // Assigning value to the leaf Node
    temp.value = key;
}
  
// Driver Code
let A=[7, 3, 9, 12];
let B=[1, 3, 5, 2];
  
let N = A.length;
// Forming Trie for B[]
let root = get();
for (let i = 0; i < N; i++)
    insert(root, B[i]);
  
for (let i = 0; i < N; i++)
    document.write(max_xor(root, A[i])+"<br>");
  
  
// This code is contributed by rag2127
  
</script>


Output

6
6
12
15

Trie formation : O(N x MAX_BITS) where MAX_BITS is maximum number of bits in binary representation of numbers. 
Calculating max bit difference : O(N x MAX_BITS) 

Time Complexity : O(N x MAX_BITS)

This article is contributed by Rohit Thapliyal. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments