Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximum possible sum of non-adjacent array elements not exceeding K

Maximum possible sum of non-adjacent array elements not exceeding K

Given an array arr[] consisting of N integers and an integer K, the task is to select some non-adjacent array elements with the maximum possible sum not exceeding K.

Examples:

Input: arr[] = {50, 10, 20, 30, 40}, K = 100
Output: 90
Explanation: To maximize the sum that doesn’t exceed K(= 100), select elements 50 and 40.
Therefore, maximum possible sum = 90.

Input: arr[] = {20, 10, 17, 12, 8, 9}, K = 64
Output: 46
Explanation: To maximize the sum that doesn’t exceed K(= 64), select elements 20, 17, and 9.
Therefore, maximum possible sum = 46.

Naive Approach: The simplest approach is to recursively generate all possible subsets of the given array and for each subset, check if it does not contain adjacent elements and has the sum not exceeding K. Among all subsets for which the above condition is found to be true, print the maximum sum obtained for any subset.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the
// maximum sum not exceeding
// K possible by selecting
// a subset of non-adjacent elements
int maxSum(int a[],
           int n, int k)
{
  // Base Case
  if (n <= 0)
    return 0;
 
  // Not selecting current
  // element
  int option = maxSum(a,
                      n - 1, k);
 
  // If selecting current
  // element is possible
  if (k >= a[n - 1])
    option = max(option,
                 a[n - 1] +
             maxSum(a, n - 2,
                    k - a[n - 1]));
 
  // Return answer
  return option;
}
 
// Driver Code
int main()
{
  // Given array arr[]
  int arr[] = {50, 10,
               20, 30, 40};
 
  int N = sizeof(arr) /
          sizeof(arr[0]);
 
  // Given K
  int K = 100;
 
  // Function Call
  cout << (maxSum(arr,
                  N, K));
}
 
// This code is contributed by gauravrajput1


Java




// Java program for the above approach
 
import java.io.*;
 
class GFG {
 
    // Function to find the maximum sum
    // not exceeding K possible by selecting
    // a subset of non-adjacent elements
    public static int maxSum(
        int a[], int n, int k)
    {
        // Base Case
        if (n <= 0)
            return 0;
 
        // Not selecting current element
        int option = maxSum(a, n - 1, k);
 
        // If selecting current element
        // is possible
        if (k >= a[n - 1])
            option = Math.max(
                option,
                a[n - 1]
                    + maxSum(a, n - 2,
                             k - a[n - 1]));
 
        // Return answer
        return option;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given array arr[]
        int arr[] = { 50, 10, 20, 30, 40 };
 
        int N = arr.length;
 
        // Given K
        int K = 100;
 
        // Function Call
        System.out.println(maxSum(arr, N, K));
    }
}


Python3




# Python3 program for the above approach
 
# Function to find the maximum sum
# not exceeding K possible by selecting
# a subset of non-adjacent elements
def maxSum(a, n, k):
     
    # Base Case
    if (n <= 0):
        return 0
 
    # Not selecting current element
    option = maxSum(a, n - 1, k)
 
    # If selecting current element
    # is possible
    if (k >= a[n - 1]):
        option = max(option, a[n - 1] +
        maxSum(a, n - 2, k - a[n - 1]))
 
    # Return answer
    return option
 
# Driver Code
if __name__ == '__main__':
     
    # Given array arr[]
    arr = [ 50, 10, 20, 30, 40 ]
 
    N = len(arr)
 
    # Given K
    K = 100
 
    # Function Call
    print(maxSum(arr, N, K))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the
// above approach
using System;
class GFG{
 
// Function to find the maximum
// sum not exceeding K possible
// by selecting a subset of
// non-adjacent elements
public static int maxSum(int []a,
                         int n, int k)
{
  // Base Case
  if (n <= 0)
    return 0;
 
  // Not selecting current element
  int option = maxSum(a, n - 1, k);
 
  // If selecting current
  // element is possible
  if (k >= a[n - 1])
    option = Math.Max(option, a[n - 1] +
                      maxSum(a, n - 2,
                             k - a[n - 1]));
   
  // Return answer
  return option;
}
 
// Driver Code
public static void Main(String[] args)
{
  // Given array []arr
  int []arr = {50, 10, 20, 30, 40};
 
  int N = arr.Length;
 
  // Given K
  int K = 100;
 
  // Function Call
  Console.WriteLine(maxSum(arr, N, K));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program for the
// above approach
 
// Function to find the maximum sum
// not exceeding K possible by selecting
// a subset of non-adjacent elements
function maxSum(a, n, k)
{
     
    // Base Case
    if (n <= 0)
        return 0;
 
    // Not selecting current element
    let option = maxSum(a, n - 1, k);
 
    // If selecting current element
    // is possible
    if (k >= a[n - 1])
        option = Math.max(option, a[n - 1] +
             maxSum(a, n - 2, k - a[n - 1]));
 
    // Return answer
    return option;
}
 
// Driver Code
 
// Given array arr[]
let arr = [ 50, 10, 20, 30, 40 ];
 
let N = arr.length;
 
// Given K
let K = 100;
 
// Function Call
document.write(maxSum(arr, N, K));
 
// This code is contributed by target_2 
 
</script>


Output

90

Time Complexity: O(2N)
Auxiliary Space: O(N)

Efficient Approach: To optimize the above approach, the idea is to use Dynamic Programming. Two possible options exist for every array element:

  1. Either skip the current element and proceed to the next element.
  2. Select the current element only if it is smaller than or equal to K.

Follow the steps below to solve the problem:

  1. Initialize an array dp[N][K+1] with -1 where dp[i][j] will store the maximum sum to make sum j using elements up to index i.
  2. From the above transition, find the maximum sums if the current element gets picked and if it is not picked, recursively.
  3. Store the minimum answer for the current state.
  4. Also, add the base condition that if the current state (i, j) is already visited i.e., dp[i][j]!=-1 return dp[i][j].
  5. Print dp[N][K] as the maximum possible sum.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Initialize dp
int dp[1005][1005];
 
// Function find the maximum sum that
// doesn't exceeds K by choosing elements
int maxSum(int* a, int n, int k)
{
     
    // Base Case
    if (n <= 0)
        return 0;
 
    // Return the memoized state
    if (dp[n][k] != -1)
        return dp[n][k];
 
    // Dont pick the current element
    int option = maxSum(a, n - 1, k);
 
    // Pick the current element
    if (k >= a[n - 1])
        option = max(option,
                     a[n - 1] +
             maxSum(a, n - 2,
                 k - a[n - 1]));
 
    // Return and store the result
    return dp[n][k] = option;
}
 
// Driver Code
int main()
{
    int N = 5;
 
    int arr[] = { 50, 10, 20, 30, 40 };
 
    int K = 100;
 
    // Fill dp array with -1
    memset(dp, -1, sizeof(dp));
 
    // Print answer
    cout << maxSum(arr, N, K) << endl;
}
 
// This code is contributed by bolliranadheer


Java




// Java program for the above approach
 
import java.util.*;
 
class GFG {
 
    // Function find the maximum sum that
    // doesn't exceeds K by choosing elements
    public static int maxSum(int a[], int n,
                             int k, int[][] dp)
    {
        // Base Case
        if (n <= 0)
            return 0;
 
        // Return the memoized state
        if (dp[n][k] != -1)
            return dp[n][k];
 
        // Dont pick the current element
        int option = maxSum(a, n - 1,
                            k, dp);
 
        // Pick the current element
        if (k >= a[n - 1])
            option = Math.max(
                option,
                a[n - 1]
                    + maxSum(a, n - 2,
                             k - a[n - 1],
                             dp));
 
        // Return and store the result
        return dp[n][k] = option;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 50, 10, 20, 30, 40 };
 
        int N = arr.length;
 
        int K = 100;
 
        // Initialize dp
        int dp[][] = new int[N + 1][K + 1];
 
        for (int i[] : dp) {
            Arrays.fill(i, -1);
        }
        // Print answer
        System.out.println(maxSum(arr, N, K, dp));
    }
}


Python3




# Python3 program for the
# above approach
 
# Function find the maximum
# sum that doesn't exceeds K
# by choosing elements
def maxSum(a, n, k, dp):
   
    # Base Case
    if (n <= 0):
        return 0;
 
    # Return the memoized state
    if (dp[n][k] != -1):
        return dp[n][k];
 
    # Dont pick the current
    # element
    option = maxSum(a, n - 1,
                    k, dp);
 
    # Pick the current element
    if (k >= a[n - 1]):
        option = max(option, a[n - 1] +
                 maxSum(a, n - 2,
                        k - a[n - 1], dp));
    dp[n][k] = option;
     
    # Return and store
    # the result
    return dp[n][k];
 
# Driver Code
if __name__ == '__main__':
   
    arr = [50, 10, 20,
           30, 40];
    N = len(arr);
    K = 100;
    # Initialize dp
    dp = [[-1 for i in range(K + 1)]
              for j in range(N + 1)]
 
    # Print answer
    print(maxSum(arr, N,
                 K, dp));
 
# This code is contributed by shikhasingrajput


C#




// C# program for the
// above approach
using System;
class GFG{
 
// Function find the maximum
// sum that doesn't exceeds K
// by choosing elements
public static int maxSum(int []a, int n,
                         int k, int[,] dp)
{
  // Base Case
  if (n <= 0)
    return 0;
 
  // Return the memoized
  // state
  if (dp[n, k] != -1)
    return dp[n, k];
 
  // Dont pick the current
  // element
  int option = maxSum(a, n - 1,
                      k, dp);
 
  // Pick the current element
  if (k >= a[n - 1])
    option = Math.Max(option, a[n - 1] +
                      maxSum(a, n - 2,
                             k - a[n - 1],
                             dp));
 
  // Return and store the
  // result
  return dp[n, k] = option;
}
 
// Driver Code
public static void Main(String[] args)
{
  int []arr = {50, 10, 20, 30, 40};
  int N = arr.Length;
  int K = 100;
   
  // Initialize dp
  int [,]dp = new int[N + 1,
                      K + 1];
 
  for (int j = 0; j < N + 1; j++)
  {
    for (int k = 0; k < K + 1; k++)
      dp[j, k] = -1;
  }
   
  // Print answer
  Console.WriteLine(maxSum(arr, N,
                           K, dp));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
 
// Javascript program to implement
// the above approach
 
    // Function find the maximum sum that
    // doesn't exceeds K by choosing elements
    function maxSum(a, n, k, dp)
    {
        // Base Case
        if (n <= 0)
            return 0;
 
        // Return the memoized state
        if (dp[n][k] != -1)
            return dp[n][k];
 
        // Dont pick the current element
        let option = maxSum(a, n - 1,
                            k, dp);
 
        // Pick the current element
        if (k >= a[n - 1])
            option = Math.max(
                option,
                a[n - 1]
                    + maxSum(a, n - 2,
                             k - a[n - 1],
                             dp));
 
        // Return and store the result
        return dp[n][k] = option;
    }
 
// Driver Code
 
 // Given array
  let arr = [ 50, 10, 20, 30, 40 ];
 
        let N = arr.length;
 
        let K = 100;
 
        // Initialize dp
        let dp = new Array(N + 1);
        // Loop to create 2D array using 1D array
        for (var i = 0; i < 1000; i++) {
            dp[i] = new Array(2);
        }
 
       for (var i = 0; i < 1000; i++) {
            for (var j = 0; j < 1000; j++) {
            dp[i][j] = -1;
        }
        }
        // Print answer
        document.write(maxSum(arr, N, K, dp));
          
</script>


Output

90

Time Complexity: O(N*K), where N is the size of the given array and K is the limit.
Auxiliary Space: O(N*K)

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a table DP to store the solution of the subproblems.
  • Initialize the table with base cases
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP
  • Return the final solution stored in

Implementation :

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum that
// doesn't exceed K by choosing elements
int maxSum(int* a, int n, int k)
{
    // Initialize the DP table
    int dp[n + 1][k + 1];
    memset(dp, 0, sizeof(dp));
 
    // Fill the DP table in bottom-up manner
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= k; j++) {
 
            // Don't pick the current element
            dp[i][j] = dp[i - 1][j];
 
            // Pick the current element
            if (j >= a[i - 1]) {
                dp[i][j] = max(
                    dp[i][j],
                    a[i - 1] + dp[i - 2][j - a[i - 1]]);
            }
        }
    }
 
    // Return the maximum sum
    return dp[n][k];
}
 
// Driver Code
int main()
{
    int N = 5;
    int arr[] = { 50, 10, 20, 30, 40 };
    int K = 100;
 
    // Print answer
    cout << maxSum(arr, N, K) << endl;
 
    return 0;
}
// this code is contributed by bhardwajji


Java




import java.util.*;
 
public class Main {
     
    // Function to find the maximum sum that
    // doesn't exceed K by choosing elements
    public static int maxSum(int[] a, int n, int k) {
        // Initialize the DP table
        int[][] dp = new int[n + 1][k + 1];
        for (int[] row : dp) {
            Arrays.fill(row, 0);
        }
 
        // Fill the DP table in bottom-up manner
  for (int i = 1; i <= n; i++) {
      for (int j = 1; j <= k; j++) {
 
          // Don't pick the current element
          dp[i][j] = dp[i - 1][j];
 
          // Pick the current element
          if (j >= a[i - 1]) {
              dp[i][j] = Math.max(
                  dp[i][j],
                  a[i - 1] + ((i >= 2) ? dp[i - 2][j - a[i - 1]] : 0));
          }
      }
  }
 
 
        // Return the maximum sum
        return dp[n][k];
    }
 
    // Driver code
    public static void main(String[] args) {
        int N = 5;
        int[] arr = { 50, 10, 20, 30, 40 };
        int K = 100;
 
        // Print answer
        System.out.println(maxSum(arr, N, K));
    }
}


Python3




# Python3 program to find the maximum sum that
# doesn't exceed K by choosing elements
 
 
def maxSum(a, n, k):
 
    # Initialize the DP table
    dp = [[0 for i in range(k + 1)] for j in range(n + 1)]
 
    # Fill the DP table in bottom-up manner
    for i in range(1, n + 1):
        for j in range(1, k + 1):
 
            # Don't pick the current element
            dp[i][j] = dp[i - 1][j]
 
            # Pick the current element
            if j >= a[i - 1]:
                dp[i][j] = max(dp[i][j], a[i - 1] + dp[i - 2][j - a[i - 1]])
 
    # Return the maximum sum
    return dp[n][k]
 
 
# Driver Code
if __name__ == "__main__":
    N = 5
    arr = [50, 10, 20, 30, 40]
    K = 100
 
    # Print answer
    print(maxSum(arr, N, K))


C#




using System;
 
public class GFG {
 
    // Function to find the maximum sum that
    // doesn't exceed K by choosing elements
    public static int maxSum(int[] a, int n, int k)
    {
        // Initialize the DP table
        int[, ] dp = new int[n + 1, k + 1];
        for (int i = 0; i <= n; i++) {
            for (int j = 0; j <= k; j++) {
                dp[i, j] = 0;
            }
        }
 
        // Fill the DP table in bottom-up manner
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= k; j++) {
 
                // Don't pick the current element
                dp[i, j] = dp[i - 1, j];
 
                // Pick the current element
                if (j >= a[i - 1]) {
                    dp[i, j] = Math.Max(
                        dp[i, j],
                        a[i - 1]
                            + ((i >= 2)
                                   ? dp[i - 2, j - a[i - 1]]
                                   : 0));
                }
            }
        }
 
        // Return the maximum sum
        return dp[n, k];
    }
 
    // Driver code
    public static void Main()
    {
        int N = 5;
        int[] arr = { 50, 10, 20, 30, 40 };
        int K = 100;
 
        // Print answer
        Console.WriteLine(maxSum(arr, N, K));
    }
}


Javascript




// JavaScript program to find the maximum sum that
// doesn't exceed K by choosing elements
function maxSum(a, n, k) {
   
    // Initialize the DP table
    let dp = new Array(n + 1);
    for (let i = 0; i < n + 1; i++) {
        dp[i] = new Array(k + 1).fill(0);
    }
 
    // Fill the DP table in bottom-up manner
    for (let i = 1; i <= n; i++) {
        for (let j = 1; j <= k; j++) {
 
            // Don't pick the current element
            dp[i][j] = dp[i - 1][j];
 
            // Pick the current element
            if (j >= a[i - 1]) {
                dp[i][j] = Math.max(dp[i][j], a[i - 1] + dp[(i - 2) < 0 ? n: i-2][j - a[i - 1]]);
            }
        }
    }
 
    // Return the maximum sum
    return dp[n][k];
}
 
// Driver Code
let N = 5;
let arr = [50, 10, 20, 30, 40];
let K = 100;
 
// Print answer
console.log(maxSum(arr, N, K));
 
// The code is contributed by Arushi Goel.


Output:

90

Time Complexity: O(N*K), where N is the size of the given array and K is the limit.
Auxiliary Space: O(N*K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments