Given an array arr[] of size N > 1. The task is to find the maximum possible GCD of the array by replacing at most one element.
Examples:
Input: arr[] = {6, 7, 8}
Output: 2
Replace 7 with 2 and gcd(6, 2, 8) = 2
which is maximum possible.
Input: arr[] = {12, 18, 30}
Output: 6
Approach:
- Idea is to find the GCD value of all the sub-sequences of length (N – 1) and removing the element which has to be replaced in the sub-sequence as it can be replaced with any other element already in the subsequence. The maximum GCD found would be the answer.
- To find the GCD of the sub-sequences optimally, maintain a prefixGCD[] and a suffixGCD[] array using single state dynamic programming.
- The maximum value of GCD(prefixGCD[i – 1], suffixGCD[i + 1]) is the required answer. Also note that suffixGCD[1] and prefixGCD[N – 2] also need to be compared in case the first or the last element has to be replaced.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach#include <bits/stdc++.h>using namespace std;// Function to return the maximum possible gcd after// replacing a single elementint MaxGCD(int a[], int n){ // Prefix and Suffix arrays int Prefix[n + 2]; int Suffix[n + 2]; // Single state dynamic programming relation for storing // gcd of first i elements from the left in Prefix[i] Prefix[1] = a[0]; for (int i = 2; i <= n; i += 1) Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (int i = n - 1; i >= 1; i -= 1) Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); // If first or last element of the array has to be // replaced int ans = max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (int i = 2; i < n; i += 1) ans = max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); // Return the maximized gcd return ans;}// Driver codeint main(){ int a[] = { 6, 7, 8 }; int n = sizeof(a) / sizeof(a[0]); printf("%d", MaxGCD(a, n)); return 0;} |
C
// C implementation of the approach#include <stdio.h>// Find maximum between two numbers.int max(int num1, int num2){ return (num1 > num2) ? num1 : num2;}// Find minimum between two numbers.int min(int num1, int num2){ return (num1 > num2) ? num2 : num1;}// Function to return gcd of a and bint gcd(int a, int b){ int result = min(a, b); // Finding minimum of a nd b while (result > 0) { if (a % result == 0 && b % result == 0) { break; } result--; } return result; // return gcd of a nd b}// Function to return the maximum possible gcd after// replacing a single elementint MaxGCD(int a[], int n){ // Prefix and Suffix arrays int Prefix[n + 2]; int Suffix[n + 2]; // Single state dynamic programming relation for storing // gcd of first i elements from the left in Prefix[i] Prefix[1] = a[0]; for (int i = 2; i <= n; i += 1) Prefix[i] = gcd(Prefix[i - 1], a[i - 1]); // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (int i = n - 1; i >= 1; i -= 1) Suffix[i] = gcd(Suffix[i + 1], a[i - 1]); // If first or last element of the array has to be // replaced int ans = max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (int i = 2; i < n; i += 1) ans = max(ans, gcd(Prefix[i - 1], Suffix[i + 1])); // Return the maximized gcd return ans;}// Driver codeint main(){ int a[] = { 6, 7, 8 }; int n = sizeof(a) / sizeof(a[0]); printf("%d", MaxGCD(a, n)); return 0;}// This code is contributed by Sania Kumari Gupta |
Java
// Java implementation of the approachclass GFG {// Function to return the maximum// possible gcd after replacing// a single elementstatic int MaxGCD(int a[], int n){ // Prefix and Suffix arrays int []Prefix = new int[n + 2]; int []Suffix = new int[n + 2]; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (int i = 2; i <= n; i += 1) { Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (int i = n - 1; i >= 1; i -= 1) { Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced int ans = Math.max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (int i = 2; i < n; i += 1) { ans = Math.max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans;}static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); }// Driver codepublic static void main(String[] args) { int a[] = { 6, 7, 8 }; int n = a.length; System.out.println(MaxGCD(a, n));}}// This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach from math import gcd as __gcd# Function to return the maximum # possible gcd after replacing # a single element def MaxGCD(a, n) : # Prefix and Suffix arrays Prefix = [0] * (n + 2); Suffix = [0] * (n + 2); # Single state dynamic programming relation # for storing gcd of first i elements # from the left in Prefix[i] Prefix[1] = a[0]; for i in range(2, n + 1) : Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); # Initializing Suffix array Suffix[n] = a[n - 1]; # Single state dynamic programming relation # for storing gcd of all the elements having # index greater than or equal to i in Suffix[i] for i in range(n - 1, 0, -1) : Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); # If first or last element of # the array has to be replaced ans = max(Suffix[2], Prefix[n - 1]); # If any other element is replaced for i in range(2, n) : ans = max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); # Return the maximized gcd return ans; # Driver code if __name__ == "__main__" : a = [ 6, 7, 8 ]; n = len(a); print(MaxGCD(a, n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approachusing System; class GFG {// Function to return the maximum// possible gcd after replacing// a single elementstatic int MaxGCD(int []a, int n){ // Prefix and Suffix arrays int []Prefix = new int[n + 2]; int []Suffix = new int[n + 2]; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (int i = 2; i <= n; i += 1) { Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (int i = n - 1; i >= 1; i -= 1) { Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced int ans = Math.Max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (int i = 2; i < n; i += 1) { ans = Math.Max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans;}static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); }// Driver codepublic static void Main(String[] args) { int []a = { 6, 7, 8 }; int n = a.Length; Console.WriteLine(MaxGCD(a, n));}}// This code is contributed by 29AjayKumar |
Javascript
<script>// Javascript implementation of the approachfunction gcd(a, b) { if (b==0) { return a; } return gcd(b, a % b);}// Function to return the maximum// possible gcd after replacing// a single elementfunction MaxGCD(a, n){ // Prefix and Suffix arrays var Prefix = Array(n + 2).fill(0); var Suffix = Array(n + 2).fill(0); var i; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (i = 2; i <= n; i++) { Prefix[i] = gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (i = n - 1; i >= 1; i--) { Suffix[i] = gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced var ans = Math.max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (i = 2; i < n; i++) { ans = Math.max(ans, gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans;}// Driver code var a = [6, 7, 8]; n = a.length; document.write(MaxGCD(a, n));</script> |
2
Time Complexity: O(n * max(a, b))
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!
