Given an array arr[] of size N > 1. The task is to find the maximum possible GCD of the array by replacing at most one element.
Examples:
Input: arr[] = {6, 7, 8}
Output: 2
Replace 7 with 2 and gcd(6, 2, 8) = 2
which is maximum possible.
Input: arr[] = {12, 18, 30}
Output: 6
Approach:
- Idea is to find the GCD value of all the sub-sequences of length (N – 1) and removing the element which has to be replaced in the sub-sequence as it can be replaced with any other element already in the subsequence. The maximum GCD found would be the answer.
- To find the GCD of the sub-sequences optimally, maintain a prefixGCD[] and a suffixGCD[] array using single state dynamic programming.
- The maximum value of GCD(prefixGCD[i – 1], suffixGCD[i + 1]) is the required answer. Also note that suffixGCD[1] and prefixGCD[N – 2] also need to be compared in case the first or the last element has to be replaced.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the maximum possible gcd after // replacing a single element int MaxGCD( int a[], int n) { // Prefix and Suffix arrays int Prefix[n + 2]; int Suffix[n + 2]; // Single state dynamic programming relation for storing // gcd of first i elements from the left in Prefix[i] Prefix[1] = a[0]; for ( int i = 2; i <= n; i += 1) Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for ( int i = n - 1; i >= 1; i -= 1) Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); // If first or last element of the array has to be // replaced int ans = max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for ( int i = 2; i < n; i += 1) ans = max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); // Return the maximized gcd return ans; } // Driver code int main() { int a[] = { 6, 7, 8 }; int n = sizeof (a) / sizeof (a[0]); printf ( "%d" , MaxGCD(a, n)); return 0; } |
C
// C implementation of the approach #include <stdio.h> // Find maximum between two numbers. int max( int num1, int num2) { return (num1 > num2) ? num1 : num2; } // Find minimum between two numbers. int min( int num1, int num2) { return (num1 > num2) ? num2 : num1; } // Function to return gcd of a and b int gcd( int a, int b) { int result = min(a, b); // Finding minimum of a nd b while (result > 0) { if (a % result == 0 && b % result == 0) { break ; } result--; } return result; // return gcd of a nd b } // Function to return the maximum possible gcd after // replacing a single element int MaxGCD( int a[], int n) { // Prefix and Suffix arrays int Prefix[n + 2]; int Suffix[n + 2]; // Single state dynamic programming relation for storing // gcd of first i elements from the left in Prefix[i] Prefix[1] = a[0]; for ( int i = 2; i <= n; i += 1) Prefix[i] = gcd(Prefix[i - 1], a[i - 1]); // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for ( int i = n - 1; i >= 1; i -= 1) Suffix[i] = gcd(Suffix[i + 1], a[i - 1]); // If first or last element of the array has to be // replaced int ans = max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for ( int i = 2; i < n; i += 1) ans = max(ans, gcd(Prefix[i - 1], Suffix[i + 1])); // Return the maximized gcd return ans; } // Driver code int main() { int a[] = { 6, 7, 8 }; int n = sizeof (a) / sizeof (a[0]); printf ( "%d" , MaxGCD(a, n)); return 0; } // This code is contributed by Sania Kumari Gupta |
Java
// Java implementation of the approach class GFG { // Function to return the maximum // possible gcd after replacing // a single element static int MaxGCD( int a[], int n) { // Prefix and Suffix arrays int []Prefix = new int [n + 2 ]; int []Suffix = new int [n + 2 ]; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[ 1 ] = a[ 0 ]; for ( int i = 2 ; i <= n; i += 1 ) { Prefix[i] = __gcd(Prefix[i - 1 ], a[i - 1 ]); } // Initializing Suffix array Suffix[n] = a[n - 1 ]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for ( int i = n - 1 ; i >= 1 ; i -= 1 ) { Suffix[i] = __gcd(Suffix[i + 1 ], a[i - 1 ]); } // If first or last element of // the array has to be replaced int ans = Math.max(Suffix[ 2 ], Prefix[n - 1 ]); // If any other element is replaced for ( int i = 2 ; i < n; i += 1 ) { ans = Math.max(ans, __gcd(Prefix[i - 1 ], Suffix[i + 1 ])); } // Return the maximized gcd return ans; } static int __gcd( int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver code public static void main(String[] args) { int a[] = { 6 , 7 , 8 }; int n = a.length; System.out.println(MaxGCD(a, n)); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 implementation of the approach from math import gcd as __gcd # Function to return the maximum # possible gcd after replacing # a single element def MaxGCD(a, n) : # Prefix and Suffix arrays Prefix = [ 0 ] * (n + 2 ); Suffix = [ 0 ] * (n + 2 ); # Single state dynamic programming relation # for storing gcd of first i elements # from the left in Prefix[i] Prefix[ 1 ] = a[ 0 ]; for i in range ( 2 , n + 1 ) : Prefix[i] = __gcd(Prefix[i - 1 ], a[i - 1 ]); # Initializing Suffix array Suffix[n] = a[n - 1 ]; # Single state dynamic programming relation # for storing gcd of all the elements having # index greater than or equal to i in Suffix[i] for i in range (n - 1 , 0 , - 1 ) : Suffix[i] = __gcd(Suffix[i + 1 ], a[i - 1 ]); # If first or last element of # the array has to be replaced ans = max (Suffix[ 2 ], Prefix[n - 1 ]); # If any other element is replaced for i in range ( 2 , n) : ans = max (ans, __gcd(Prefix[i - 1 ], Suffix[i + 1 ])); # Return the maximized gcd return ans; # Driver code if __name__ = = "__main__" : a = [ 6 , 7 , 8 ]; n = len (a); print (MaxGCD(a, n)); # This code is contributed by AnkitRai01 |
C#
// C# implementation of the approach using System; class GFG { // Function to return the maximum // possible gcd after replacing // a single element static int MaxGCD( int []a, int n) { // Prefix and Suffix arrays int []Prefix = new int [n + 2]; int []Suffix = new int [n + 2]; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for ( int i = 2; i <= n; i += 1) { Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for ( int i = n - 1; i >= 1; i -= 1) { Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced int ans = Math.Max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for ( int i = 2; i < n; i += 1) { ans = Math.Max(ans, __gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans; } static int __gcd( int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver code public static void Main(String[] args) { int []a = { 6, 7, 8 }; int n = a.Length; Console.WriteLine(MaxGCD(a, n)); } } // This code is contributed by 29AjayKumar |
Javascript
<script> // Javascript implementation of the approach function gcd(a, b) { if (b==0) { return a; } return gcd(b, a % b); } // Function to return the maximum // possible gcd after replacing // a single element function MaxGCD(a, n) { // Prefix and Suffix arrays var Prefix = Array(n + 2).fill(0); var Suffix = Array(n + 2).fill(0); var i; // Single state dynamic programming relation // for storing gcd of first i elements // from the left in Prefix[i] Prefix[1] = a[0]; for (i = 2; i <= n; i++) { Prefix[i] = gcd(Prefix[i - 1], a[i - 1]); } // Initializing Suffix array Suffix[n] = a[n - 1]; // Single state dynamic programming relation // for storing gcd of all the elements having // index greater than or equal to i in Suffix[i] for (i = n - 1; i >= 1; i--) { Suffix[i] = gcd(Suffix[i + 1], a[i - 1]); } // If first or last element of // the array has to be replaced var ans = Math.max(Suffix[2], Prefix[n - 1]); // If any other element is replaced for (i = 2; i < n; i++) { ans = Math.max(ans, gcd(Prefix[i - 1], Suffix[i + 1])); } // Return the maximized gcd return ans; } // Driver code var a = [6, 7, 8]; n = a.length; document.write(MaxGCD(a, n)); </script> |
2
Time Complexity: O(n * max(a, b))
Auxiliary Space: O(n)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!