Sunday, January 12, 2025
Google search engine
HomeData Modelling & AIMaximum possible GCD after replacing at most one element in the given...

Maximum possible GCD after replacing at most one element in the given array

Given an array arr[] of size N > 1. The task is to find the maximum possible GCD of the array by replacing at most one element.
Examples: 
 

Input: arr[] = {6, 7, 8} 
Output:
Replace 7 with 2 and gcd(6, 2, 8) = 2 
which is maximum possible.
Input: arr[] = {12, 18, 30} 
Output:
 

 

Approach: 
 

  • Idea is to find the GCD value of all the sub-sequences of length (N – 1) and removing the element which has to be replaced in the sub-sequence as it can be replaced with any other element already in the subsequence. The maximum GCD found would be the answer.
  • To find the GCD of the sub-sequences optimally, maintain a prefixGCD[] and a suffixGCD[] array using single state dynamic programming.
  • The maximum value of GCD(prefixGCD[i – 1], suffixGCD[i + 1]) is the required answer. Also note that suffixGCD[1] and prefixGCD[N – 2] also need to be compared in case the first or the last element has to be replaced.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the maximum possible gcd after
// replacing a single element
int MaxGCD(int a[], int n)
{
 
    // Prefix and Suffix arrays
    int Prefix[n + 2];
    int Suffix[n + 2];
 
    // Single state dynamic programming relation for storing
    // gcd of first i elements from the left in Prefix[i]
    Prefix[1] = a[0];
    for (int i = 2; i <= n; i += 1)
        Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]);
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (int i = n - 1; i >= 1; i -= 1)
        Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]);
 
    // If first or last element of the array has to be
    // replaced
    int ans = max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (int i = 2; i < n; i += 1)
        ans = max(ans, __gcd(Prefix[i - 1], Suffix[i + 1]));
 
    // Return the maximized gcd
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { 6, 7, 8 };
    int n = sizeof(a) / sizeof(a[0]);
    printf("%d", MaxGCD(a, n));
    return 0;
}


C




// C implementation of the approach
#include <stdio.h>
 
// Find maximum between two numbers.
int max(int num1, int num2)
{
    return (num1 > num2) ? num1 : num2;
}
 
// Find minimum between two numbers.
int min(int num1, int num2)
{
    return (num1 > num2) ? num2 : num1;
}
 
// Function to return gcd of a and b
int gcd(int a, int b)
{
    int result = min(a, b); // Finding minimum of a nd b
    while (result > 0) {
        if (a % result == 0 && b % result == 0) {
            break;
        }
        result--;
    }
    return result; // return gcd of a nd b
}
 
// Function to return the maximum possible gcd after
// replacing a single element
int MaxGCD(int a[], int n)
{
 
    // Prefix and Suffix arrays
    int Prefix[n + 2];
    int Suffix[n + 2];
 
    // Single state dynamic programming relation for storing
    // gcd of first i elements from the left in Prefix[i]
    Prefix[1] = a[0];
    for (int i = 2; i <= n; i += 1)
        Prefix[i] = gcd(Prefix[i - 1], a[i - 1]);
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (int i = n - 1; i >= 1; i -= 1)
        Suffix[i] = gcd(Suffix[i + 1], a[i - 1]);
 
    // If first or last element of the array has to be
    // replaced
    int ans = max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (int i = 2; i < n; i += 1)
        ans = max(ans, gcd(Prefix[i - 1], Suffix[i + 1]));
 
    // Return the maximized gcd
    return ans;
}
 
// Driver code
int main()
{
    int a[] = { 6, 7, 8 };
    int n = sizeof(a) / sizeof(a[0]);
    printf("%d", MaxGCD(a, n));
    return 0;
}
 
// This code is contributed by Sania Kumari Gupta


Java




// Java implementation of the approach
class GFG
{
 
// Function to return the maximum
// possible gcd after replacing
// a single element
static int MaxGCD(int a[], int n)
{
 
    // Prefix and Suffix arrays
    int []Prefix = new int[n + 2];
    int []Suffix = new int[n + 2];
 
    // Single state dynamic programming relation
    // for storing gcd of first i elements
    // from the left in Prefix[i]
    Prefix[1] = a[0];
    for (int i = 2; i <= n; i += 1)
    {
        Prefix[i] = __gcd(Prefix[i - 1],
                               a[i - 1]);
    }
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (int i = n - 1; i >= 1; i -= 1)
    {
        Suffix[i] = __gcd(Suffix[i + 1],
                               a[i - 1]);
    }
 
    // If first or last element of
    // the array has to be replaced
    int ans = Math.max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (int i = 2; i < n; i += 1)
    {
        ans = Math.max(ans, __gcd(Prefix[i - 1],
                                  Suffix[i + 1]));
    }
 
    // Return the maximized gcd
    return ans;
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 6, 7, 8 };
    int n = a.length;
 
    System.out.println(MaxGCD(a, n));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# Python3 implementation of the approach
from math import gcd as __gcd
 
# Function to return the maximum
# possible gcd after replacing
# a single element
def MaxGCD(a, n) :
 
    # Prefix and Suffix arrays
    Prefix = [0] * (n + 2);
    Suffix = [0] * (n + 2);
 
    # Single state dynamic programming relation
    # for storing gcd of first i elements
    # from the left in Prefix[i]
    Prefix[1] = a[0];
     
    for i in range(2, n + 1) :
        Prefix[i] = __gcd(Prefix[i - 1], a[i - 1]);
 
    # Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    # Single state dynamic programming relation
    # for storing gcd of all the elements having
    # index greater than or equal to i in Suffix[i]
    for i in range(n - 1, 0, -1) :
        Suffix[i] = __gcd(Suffix[i + 1], a[i - 1]);
 
    # If first or last element of
    # the array has to be replaced
    ans = max(Suffix[2], Prefix[n - 1]);
 
    # If any other element is replaced
    for i in range(2, n) :
        ans = max(ans, __gcd(Prefix[i - 1],
                             Suffix[i + 1]));
 
    # Return the maximized gcd
    return ans;
 
# Driver code
if __name__ == "__main__" :
 
    a = [ 6, 7, 8 ];
    n = len(a);
 
    print(MaxGCD(a, n));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
 
// Function to return the maximum
// possible gcd after replacing
// a single element
static int MaxGCD(int []a, int n)
{
 
    // Prefix and Suffix arrays
    int []Prefix = new int[n + 2];
    int []Suffix = new int[n + 2];
 
    // Single state dynamic programming relation
    // for storing gcd of first i elements
    // from the left in Prefix[i]
    Prefix[1] = a[0];
    for (int i = 2; i <= n; i += 1)
    {
        Prefix[i] = __gcd(Prefix[i - 1],
                            a[i - 1]);
    }
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (int i = n - 1; i >= 1; i -= 1)
    {
        Suffix[i] = __gcd(Suffix[i + 1],
                            a[i - 1]);
    }
 
    // If first or last element of
    // the array has to be replaced
    int ans = Math.Max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (int i = 2; i < n; i += 1)
    {
        ans = Math.Max(ans, __gcd(Prefix[i - 1],
                                Suffix[i + 1]));
    }
 
    // Return the maximized gcd
    return ans;
}
 
static int __gcd(int a, int b)
{
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 6, 7, 8 };
    int n = a.Length;
 
    Console.WriteLine(MaxGCD(a, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// Javascript implementation of the approach
 
function gcd(a, b) {
  if (b==0) {
    return a;
  }
 
  return gcd(b, a % b);
}
// Function to return the maximum
// possible gcd after replacing
// a single element
function MaxGCD(a, n)
{
 
    // Prefix and Suffix arrays
    var Prefix = Array(n + 2).fill(0);
    var Suffix = Array(n + 2).fill(0);
 
    var i;
    // Single state dynamic programming relation
    // for storing gcd of first i elements
    // from the left in Prefix[i]
    Prefix[1] = a[0];
    for (i = 2; i <= n; i++) {
        Prefix[i] = gcd(Prefix[i - 1], a[i - 1]);
    }
 
    // Initializing Suffix array
    Suffix[n] = a[n - 1];
 
    // Single state dynamic programming relation
    // for storing gcd of all the elements having
    // index greater than or equal to i in Suffix[i]
    for (i = n - 1; i >= 1; i--) {
        Suffix[i] = gcd(Suffix[i + 1], a[i - 1]);
    }
 
    // If first or last element of
    // the array has to be replaced
    var ans = Math.max(Suffix[2], Prefix[n - 1]);
 
    // If any other element is replaced
    for (i = 2; i < n; i++) {
        ans = Math.max(ans, gcd(Prefix[i - 1],
        Suffix[i + 1]));
    }
 
    // Return the maximized gcd
    return ans;
}
 
// Driver code
    var a = [6, 7, 8];
    n = a.length;
 
    document.write(MaxGCD(a, n));
 
</script>


Output: 

2

 

Time Complexity: O(n * max(a, b))

Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments