Thursday, January 30, 2025
Google search engine
HomeData Modelling & AIMaximum possible Array sum after performing given operations

Maximum possible Array sum after performing given operations

Given array arr[] of positive integers, an integer Q, and arrays X[] and Y[] of size Q. For each element in arrays X[] and Y[], we can perform the below operations:

  • For each query from array X[] and Y[], select at most X[i] elements from array arr[] and replace all the selected elements with integer Y[i].
  • After performing Q operations, the task is to obtain maximum sum from the array arr[].

Examples:

Input: arr[] = {5, 2, 6, 3, 8, 5, 4, 7, 9, 10}, Q = 3, X[] = {2, 4, 1}, Y[] = {4, 3, 10} 
Output: 68 
Explanation: 
For i = 1, 
We can replace atmost 2 elements from array arr[] with integer 4. Here 2 element of array arr[] are smaller than 4 so we will replace elements 2 and 3 from array arr[] with 4 and arr[] becomes {5, 4, 6, 4, 8, 5, 4, 7, 9, 10}.
For i = 2, 
We can replace at most 4 elements from array ar[] with integer 3, but no element of array arr[] is smaller than 3. So we will not replace anything.
For i = 3, 
We can replace at most 1 element from array arr[] with integer 10, 9 elements of array arr[] are smaller than 10. To get the maximum sum, we will replace the smallest element from array arr[] with 10. Array arr[] after 3rd operation = {5, 10, 6, 4, 8, 5, 10, 7, 9, 10 }. The maximum possible sum is 68.
Input: ar[] = {200, 100, 200, 300}, Q = 2, X[] = {2, 3}, Y[] = {100, 90} 
Output: 800 
Explanation: 
For i = 1, 
We can replace atmost 2 elements from array arr[] with integer 100, no element of array arr[] is smaller than 100. So we will replace 0 elements.
For i = 2, 
We can replace at most 3 elements from array arr[] with integer 90, no element of array arr[] is smaller than 90. So we will replace 0 elements. So the maximum sum we can obtain after q operation is 800.

Naive Approach: The naive idea is to pick X[i] number elements from the array arr[]. If the elements in the array are less than Y[i] then update X[i] of such elements. 
Time Complexity: (N2), as we will be using nested loops for traversing N*N times. Where N is the number of elements in the array.
Auxiliary Space: O(1), as we will not be using any extra space.

Efficient Approach: The idea is to use a priority queue to get the element with higher value before the element with lower value, precisely priority queue of pairs to store value with its frequency. Below are the steps:

  • Insert each element of the array arr[] with their occurrence in the priority queue.
  • For each element(say X[i]) in the array X[] do the following: 
    1. Choose at most X[i] number of minimum element from the priority queue.
    2. Replace it with Y[i] if choose element is less than Y[i].
    3. Insert back the replaced element into the priority queue with their corresponding frequency.
  • After the above operations the array arr[] will have elements such that sum of all element is maximum. Print the sum.

Below is the implementation of the above approach:

C++




// C++ implementation to find the
// maximum possible sum of array
// after performing given operations
#include <bits/stdc++.h>
using namespace std;
 
// Function to get maximum
// sum after q operations
void max_sum(int ar[], int n,
             int q, int x[], int y[])
{
    int ans = 0, i;
 
    // priority queue to
    // get maximum sum
    priority_queue<pair<int, int> > pq;
 
    // Push pair, value and 1
    // in the priority queue
    for (i = 0; i < n; i++)
        pq.push({ ar[i], 1 });
 
    // Push pair, value (to be replaced)
    // and number of elements (to be replaced)
    for (i = 0; i < q; i++)
        pq.push({ y[i], x[i] });
 
    // Add top n elements from
    // the priority queue
    // to get max sum
    while (n > 0) {
 
        // pr is the pair
        // pr.first is the value and
        // pr.second is the occurrence
        auto pr = pq.top();
 
        // pop from the priority queue
        pq.pop();
 
        // Add value to answer
        ans += pr.first * min(n, pr.second);
 
        // Update n
        n -= pr.second;
    }
 
    cout << ans << "\n";
}
 
// Driver code
int main()
{
    int ar[] = { 200, 100, 200, 300 };
    int n = (sizeof ar) / (sizeof ar[0]);
    int q = 2;
    int x[] = { 2, 3 };
    int y[] = { 100, 90 };
    max_sum(ar, n, q, x, y);
 
    return 0;
}


Java




// Java implementation to find the
// maximum possible sum of array
// after performing given operations
import java.util.*;
import java.lang.*;
 
class GFG{
 
static class pair
{
    int first, second;
    pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function to get maximum
// sum after q operations
static void max_sum(int ar[], int n, int q,
                    int x[], int y[])
{
    int ans = 0, i;
 
    // priority queue to
    // get maximum sum
    PriorityQueue<pair> pq = new PriorityQueue<>(
        (a, b) -> Integer.compare(a.second, b.second));
 
    // Push pair, value and 1
    // in the priority queue
    for(i = 0; i < n; i++)
        pq.add(new pair(ar[i], 1 ));
 
    // Push pair, value (to be replaced)
    // and number of elements (to be replaced)
    for(i = 0; i < q; i++)
        pq.add(new pair(y[i], x[i]));
 
    // Add top n elements from
    // the priority queue
    // to get max sum
    while (n > 0)
    {
         
        // pr is the pair
        // pr.first is the value and
        // pr.second is the occurrence
        pair pr = pq.peek();
 
        // pop from the priority queue
        pq.poll();
 
        // Add value to answer
        ans += pr.first * Math.min(n, pr.second);
 
        // Update n
        n -= pr.second;
    }
    System.out.println(ans);
}
 
// Driver Code
public static void main (String[] args)
{
    int ar[] = { 200, 100, 200, 300 };
    int n = ar.length;
    int q = 2;
    int x[] = { 2, 3 };
    int y[] = { 100, 90 };
     
    max_sum(ar, n, q, x, y);
}
}
 
// This code is contributed by offbeat


Python3




# Python implementation to find the
# maximum possible sum of array
# after performing given operations
 
from queue import PriorityQueue
 
 
def max_sum(arr, n, q, x, y):
    ans = 0
    i = 0
    #  priority queue to
    #  get maximum sum
    pq = PriorityQueue()
    # Push pair, value and 1
    # in the priority queue
    for i in range(n):
        pq.put((-arr[i], 1))
 
    # Push pair, value (to be replaced)
    # and number of elements (to be replaced)
    for i in range(q):
        pq.put((-y[i], x[i]))
 
    # Add top n elements from
    # the priority queue
    # to get max sum
 
    while n > 0:
        # pr is the pair
        # pr.first is the value and
        # pr.second is the occurrence
        pr = pq.get()
        # Add value to answer
        ans += abs(pr[0]) * min(n, pr[1])
        # Update n
        n -= pr[1]
    print(ans)
 
 
ar = [200, 100, 200, 300]
n = len(ar)
q = 2
x = [2, 3]
y = [100, 90]
max_sum(ar, n, q, x, y)
 
# This code is provided by sdeadityasharma


C#




// C# implementation to find the
// maximum possible sum of array
// after performing given operations
using System;
using System.Linq;
using System.Collections.Generic;
 
public class Pair {
  public int first;
  public int second;
  public Pair(int first, int second)
  {
    this.first = first;
    this.second = second;
  }
}
 
public class GFG {
 
  // Function to get maximum
  // sum after q operations
  static void MaxSum(int[] ar, int n, int q, int[] x,
                     int[] y)
  {
    int ans = 0;
    int i, j;
 
    // Push pair, value and 1
    // in the array
    List<Pair> pq = new List<Pair>();
    for (i = 0; i < n; i++)
      pq.Add(new Pair(ar[i], 1));
 
    // Push pair, value (to be replaced)
    // and number of elements (to be replaced)
    for (i = 0; i < q; i++)
      pq.Add(new Pair(y[i], x[i]));
 
    pq = pq.OrderBy(p => p.second).ToList();
 
    // Add top n elements from
    // the priority queue
    // to get max sum
    while (n > 0) {
 
      // pr is the pair
      // pr.first is the value and
      // pr.second is the occurrence
      var pr = pq[0];
 
      // pop from the priority queue
      pq.RemoveAt(0);
 
      // Add value to answer
      ans += pr.first * Math.Min(n, pr.second);
 
      // Update n
      n -= pr.second;
    }
    Console.WriteLine(ans);
  }
 
  // Driver Code
  public static void Main(string[] args)
  {
    int[] ar = { 200, 100, 200, 300 };
    int n = ar.Length;
    int q = 2;
    int[] x = { 2, 3 };
    int[] y = { 100, 90 };
 
    MaxSum(ar, n, q, x, y);
  }
}
 
// This code is contributed by phasing17


Javascript




// Javascript implementation to find the
// maximum possible sum of array
// after performing given operations
 
// Function to get maximum
// sum after q operations
    function max_sum(arr, n, q, x, y) {
    let ans = 0;
     
     // priority queue to
    // get maximum sum
    let pq = [];
       
     // Push pair, value and 1
    // in the priority queue
    for (let i = 0; i < n; i++) {
        pq.push([-arr[i], 1]);
    }
     
    // Push pair, value (to be replaced)
    // and number of elements (to be replaced)
    for (let i = 0; i < q; i++) {
        pq.push([-y[i], x[i]]);
    }
    pq.sort((a, b) => a[0] - b[0]);
     
    // Add top n elements from
    // the priority queue
    // to get max sum
    while (n > 0)
    {
     
        // pr is the pair
        // pr.first is the value and
        // pr.second is the occurrence
        let pr = pq.shift();
         
        // Add value to answer
        ans += Math.abs(pr[0]) * Math.min(n, pr[1]);
         
        // Update n
        n -= pr[1];
    }
       
    console.log(ans);
    }
     
    // Driver code
    let ar = [200, 100, 200, 300];
    let n = ar.length;
    let q = 2;
    let x = [2, 3];
    let y = [100, 90];
     
    max_sum(ar, n, q, x, y);
     
    // This code is contributed by Aman Kumar.


Output: 

800

Time Complexity: O(N*log2N), as we are using a loop to traverse N times and priority queue operation will take log2N times. Where N is the number of elements in the array.
Auxiliary Space: O(N), as we are using extra space for the priority queue. Where N is the number of elements in the array.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments