Given a matrix of size N X M consisting of ‘#’, ‘.’ and ‘*’. ‘#’ means blocked path, ‘.’ means walkable path and ‘*’ means points that you have to collect. Now consider you are at the top left of the matrix. You have to reach the bottom right of the matrix and come back to the top left. When you are moving top left to bottom right, you are allowed to walk right or down. And when you are moving the bottom right to top left, you are allowed to walk left or up. The task is to find the maximum points you can grab during your whole journey. Points once taken will be converted into ‘.’ i.e walkable path.
Examples:
Input : N = 3, M = 4 **** .##. .##. **** Output : 8 Input : N = 9, M = 7 *........ .....**#. ..**...#* ..####*#. .*.#*.*#. ...#**... *........ Output : 7
If you consider two paths – one from (0, 0) to (N – 1, M – 1) and another from (N – 1, M – 1) to (0, 0) and collect maximum * in each path. You might end up with wrong answer. If you add the answer of both the paths independently, you will be calculating the intersecting points once again while backtracking. Essentially, ending up with the same path. Even if you keep a visited array, marking every * on the first path, you will still not end up with the correct answer.
Consider the following example:
If we consider as two independent path, then
total * collected is 7.
Whereas the maximum points collected can be 8 by following paths.
There are 4 * on each path. Hence, total = 8.
Thus we see that the optimal solution is not the sum of optimal solutions of both the path independently. The optimal answer for one does not ensure an optimal answer.
So, we will have to calculate both the paths simultaneously. This is needed because the answer for path 2 depends on the route chosen by path 1. Simultaneous calculations can be done by considering two paths from (0, 0) to (N-1, M-1) and making four decisions at each position (two for each).
So instead of two traveling one path from top left to the bottom right and other from the bottom right to top left, we will travel two paths from (0, 0) to (N-1, M-1) simultaneously, so at each step, we take one step for both paths. So our state will consist of (x1, y1, x2, y2) where (x1, y1) is the position of the first path and (x2, y2) is the position of the second tourist in the grid.
Points to notice:
- At each step either step can move right or down, so we have 4 choices for movement(2 choices for each path).
- If both paths are on the same cell (x1 == x2 and y1 == y2) then we can add only 1 to result if that cell has *.
- We can reduce the complexity by reducing the state dimension from 4 to 3. If we know the position of first path (x1, y1) the x coordinate of second path x2, then we must have x1 + y1 = x2 + y2 since both path cover the same distance in the same amount of time. So y2 = x1 + y1 – x2 and our state depends only on (x1, y1, x2).
Below is the implementation of this approach:
C++
// CPP program to find maximum points that can // be collected in a journey from top to bottom // and then back from bottom to top, #include <bits/stdc++.h> #define MAX 5 #define N 5 #define M 5 #define inf 100000 using namespace std; // Calculating the points at a (row1, col1) && // (row2, col2) from path1 && path2 int cost( char grid[][M], int row1, int col1, int row2, int col2) { // If both path is at same cell if (row1 == row2 && col1 == col2) { // If the cell contain *, return 1 if (grid[row1][col1] == '*' ) return 1; // else return 0. return 0; } int ans = 0; // If path 1 contain *, add to answer. if (grid[row1][col1] == '*' ) ans++; // If path contain *, add to answer. if (grid[row2][col2] == '*' ) ans++; return ans; } // Calculate the maximum points that can be // collected. int solve( int n, int m, char grid[][M], int dp[MAX][MAX][MAX], int row1, int col1, int row2) { int col2 = (row1 + col1) - (row2); // If both path reach the bottom right cell if (row1 == n - 1 && col1 == m - 1 && row2 == n - 1 && col2 == m - 1) return 0; // If moving out of grid if (row1 >= n || col1 >= m || row2 >= n || col2 >= m) return -1 * inf; // If already calculated, return the value if (dp[row1][col1][row2] != -1) return dp[row1][col1][row2]; // Variable for 4 options. int ch1 = -1 * inf, ch2 = -1 * inf; int ch3 = -1 * inf, ch4 = -1 * inf; // If path 1 is moving right and path 2 // is moving down. if (col1 + 1 < m && row2 + 1 < n && grid[row1][col1 + 1] != '#' && grid[row2 + 1][col2] != '#' ) ch1 = cost(grid, row1, col1 + 1, row2 + 1, col2) + solve(n, m, grid, dp, row1, col1 + 1, row2 + 1); // If path 1 is moving right and path 2 is moving // right. if (col2 + 1 < m && col1 + 1 < m && grid[row1][col1 + 1] != '#' && grid[row2][col2 + 1] != '#' ) ch2 = cost(grid, row1, col1 + 1, row2, col2 + 1) + solve(n, m, grid, dp, row1, col1 + 1, row2); // If path 1 is moving down and path 2 is moving right. if (col2 + 1 < m && row1 + 1 < n && grid[row1 + 1][col1] != '#' && grid[row2][col2 + 1] != '#' ) ch3 = cost(grid, row1 + 1, col1, row2, col2 + 1) + solve(n, m, grid, dp, row1 + 1, col1, row2); // If path 1 is moving down and path 2 is moving down. if (row1 + 1 < n && row2 + 1 < n && grid[row1 + 1][col1] != '#' && grid[row2 + 1][col2] != '#' ) ch4 = cost(grid, row1 + 1, col1, row2 + 1, col2) + solve(n, m, grid, dp, row1 + 1, col1, row2 + 1); // Returning the maximum of 4 options. return dp[row1][col1][row2] = max({ch1, ch2, ch3, ch4}); } // Wrapper Function int wrapper( int n, int m, char grid[N][M]) { int ans = 0; int dp[MAX][MAX][MAX]; memset (dp, -1, sizeof dp); // If last bottom right cell is blocked if (grid[n - 1][m - 1] == '#' || grid[0][0] == '#' ) ans = -1 * inf; // If top left cell contain * if (grid[0][0] == '*' ) ans++; grid[0][0] = '.' ; // If bottom right cell contain * if (grid[n - 1][m - 1] == '*' ) ans++; grid[n - 1][m - 1] = '.' ; ans += solve(n, m, grid, dp, 0, 0, 0); return max(ans, 0); } // Driven Program int main() { int n = 5, m = 5; char grid[N][M] = { { '.' , '*' , '.' , '*' , '.' }, { '*' , '#' , '#' , '#' , '.' }, { '*' , '.' , '*' , '.' , '*' }, { '.' , '#' , '#' , '#' , '*' }, { '.' , '*' , '.' , '*' , '.' } }; cout << wrapper(n, m, grid) << endl; return 0; } |
Java
// Java program to find maximum points that can // be collected in a journey from top to bottom // and then back from bottom to top, import java.io.*; class GFG { static int MAX = 5 ; static int N = 5 ; static int M = 5 ; static int inf = 100000 ; // Calculating the points at a (row1, col1) && // (row2, col2) from path1 && path2 public static int cost( char grid[][], int row1, int col1, int row2, int col2) { // If both path is at same cell if (row1 == row2 && col1 == col2) { // If the cell contain *, return 1 if (grid[row1][col1] == '*' ) return 1 ; // else return 0. return 0 ; } int ans = 0 ; // If path 1 contain *, add to answer. if (grid[row1][col1] == '*' ) ans++; // If path contain *, add to answer. if (grid[row2][col2] == '*' ) ans++; return ans; } // Calculate the maximum points that can be // collected. public static int solve( int n, int m, char grid[][], int dp[][][], int row1, int col1, int row2) { int col2 = (row1 + col1) - (row2); // If both path reach the bottom right cell if (row1 == n - 1 && col1 == m - 1 && row2 == n - 1 && col2 == m - 1 ) return 0 ; // If moving out of grid if (row1 >= n || col1 >= m || row2 >= n || col2 >= m) return - 1 * inf; // If already calculated, return the value if (dp[row1][col1][row2] != - 1 ) return dp[row1][col1][row2]; // Variable for 4 options. int ch1 = - 1 * inf, ch2 = - 1 * inf; int ch3 = - 1 * inf, ch4 = - 1 * inf; // If path 1 is moving right and path 2 // is moving down. if (col1 + 1 < m && row2 + 1 < n && grid[row1][col1 + 1 ] != '#' && grid[row2 + 1 ][col2] != '#' ) ch1 = cost(grid, row1, col1 + 1 , row2 + 1 , col2) + solve(n, m, grid, dp, row1, col1 + 1 , row2 + 1 ); // If path 1 is moving right and path 2 is moving // right. if (col2 + 1 < m && col1 + 1 < m && grid[row1][col1 + 1 ] != '#' && grid[row2][col2 + 1 ] != '#' ) ch2 = cost(grid, row1, col1 + 1 , row2, col2 + 1 ) + solve(n, m, grid, dp, row1, col1 + 1 , row2); // If path 1 is moving down and path 2 is moving // right. if (col2 + 1 < m && row1 + 1 < n && grid[row1 + 1 ][col1] != '#' && grid[row2][col2 + 1 ] != '#' ) ch3 = cost(grid, row1 + 1 , col1, row2, col2 + 1 ) + solve(n, m, grid, dp, row1 + 1 , col1, row2); // If path 1 is moving down and path 2 is moving // down. if (row1 + 1 < n && row2 + 1 < n && grid[row1 + 1 ][col1] != '#' && grid[row2 + 1 ][col2] != '#' ) ch4 = cost(grid, row1 + 1 , col1, row2 + 1 , col2) + solve(n, m, grid, dp, row1 + 1 , col1, row2 + 1 ); // Returning the maximum of 4 options. return dp[row1][col1][row2] = Math.max( ch1, Math.max(ch2, Math.max(ch3, ch4))); } // Wrapper Function public static int wrapper( int n, int m, char grid[][]) { int ans = 0 ; int dp[][][] = new int [MAX][MAX][MAX]; for ( int i = 0 ; i < MAX; i++) for ( int j = 0 ; j < MAX; j++) for ( int k = 0 ; k < MAX; k++) dp[i][j][k] = - 1 ; // If last bottom right cell is blocked if (grid[n - 1 ][m - 1 ] == '#' || grid[ 0 ][ 0 ] == '#' ) ans = - 1 * inf; // If top left cell contain * if (grid[ 0 ][ 0 ] == '*' ) ans++; grid[ 0 ][ 0 ] = '.' ; // If bottom right cell contain * if (grid[n - 1 ][m - 1 ] == '*' ) ans++; grid[n - 1 ][m - 1 ] = '.' ; ans += solve(n, m, grid, dp, 0 , 0 , 0 ); return Math.max(ans, 0 ); } // Driver Code public static void main(String[] args) { int n = 5 , m = 5 ; char grid[][] = { { '.' , '*' , '.' , '*' , '.' }, { '*' , '#' , '#' , '#' , '.' }, { '*' , '.' , '*' , '.' , '*' }, { '.' , '#' , '#' , '#' , '*' }, { '.' , '*' , '.' , '*' , '.' } }; System.out.println(wrapper(n, m, grid)); } } // This code is contributed by Rohit Pradhan |
Python3
# Python3 program to find maximum points # that can be collected in a journey from # top to bottom and then back from bottom to top, MAX = 5 N = 5 M = 5 inf = 100000 # Calculating the points at a (row1, col1) and # (row2, col2) from path1 and path2 def cost(grid, row1, col1, row2, col2): # If both path is at same cell if (row1 = = row2 and col1 = = col2): # If the cell contain *, return 1 if (grid[row1][col1] = = '*' ): return 1 # else return 0. return 0 ans = 0 # If path 1 contain *, add to answer. if (grid[row1][col1] = = '*' ): ans + = 1 # If path contain *, add to answer. if (grid[row2][col2] = = '*' ): ans + = 1 return ans # Calculate the maximum points that can be # collected. def solve(n, m, grid, dp, row1, col1, row2): col2 = (row1 + col1) - (row2) # If both path reach the bottom right cell if (row1 = = n - 1 and col1 = = m - 1 and row2 = = n - 1 and col2 = = m - 1 ): return 0 # If moving out of grid if (row1 > = n or col1 > = m or row2 > = n or col2 > = m): return - 1 * inf # If already calculated, return the value if (dp[row1][col1][row2] ! = - 1 ): return dp[row1][col1][row2] # Variable for 4 options. ch1 = - 1 * inf ch2 = - 1 * inf ch3 = - 1 * inf ch4 = - 1 * inf # If path 1 is moving right and path 2 # is moving down. if (col1 + 1 < m and row2 + 1 < n and grid[row1][col1 + 1 ] ! = '#' and grid[row2 + 1 ][col2] ! = '#' ): ch1 = cost(grid, row1, col1 + 1 , row2 + 1 , col2) + \ solve(n, m, grid, dp, row1, col1 + 1 , row2 + 1 ) # If path 1 is moving right and path 2 # is moving right. if (col1 + 1 < m and col2 + 1 < m and grid[row1][col1 + 1 ] ! = '#' and grid[row2][col2 + 1 ] ! = '#' ): ch2 = cost(grid, row1, col1 + 1 , row2, col2 + 1 ) + \ solve(n, m, grid, dp, row1, col1 + 1 , row2) # If path 1 is moving down and path 2 # is moving right. if (row1 + 1 < n and col2 + 1 < m and grid[row1 + 1 ][col1] ! = '#' and grid[row2][col2 + 1 ] ! = '#' ): ch3 = cost(grid, row1 + 1 , col1, row2, col2 + 1 ) + \ solve(n, m, grid, dp, row1 + 1 , col1, row2) # If path 1 is moving down and path 2 is moving down. if (row1 + 1 < n and row2 + 1 < n and grid[row1 + 1 ][col1] ! = '#' and grid[row2 + 1 ][col2] ! = '#' ): ch4 = cost(grid, row1 + 1 , col1, row2 + 1 , col2) + \ solve(n, m, grid, dp, row1 + 1 , col1, row2 + 1 ) # Returning the maximum of 4 options. dp[row1][col1][row2] = max (ch1, ch2, ch3, ch4) return dp[row1][col1][row2] # Wrapper Function def wrapper(n, m, grid): ans = 0 dp = [[[ - 1 ] * MAX for i in range ( MAX )] for j in range ( MAX )] # If last bottom right cell is blocked if (grid[n - 1 ][m - 1 ] = = '#' or grid[ 0 ][ 0 ] = = '#' ): ans = - 1 * inf # If top left cell contain * if (grid[ 0 ][ 0 ] = = '*' ): ans + = 1 grid[ 0 ][ 0 ] = '.' # If bottom right cell contain * if (grid[n - 1 ][m - 1 ] = = '*' ): ans + = 1 grid[n - 1 ][m - 1 ] = '.' ans + = solve(n, m, grid, dp, 0 , 0 , 0 ) return max (ans, 0 ) # Driver Code if __name__ = = '__main__' : n = 5 m = 5 grid = [[ '.' , '*' , '.' , '*' , '.' ], [ '*' , '#' , '#' , '#' , '.' ], [ '*' , '.' , '*' , '.' , '*' ], [ '.' , '#' , '#' , '#' , '*' ], [ '.' , '*' , '.' , '*' , '.' ]] print (wrapper(n, m, grid)) # This code is contributed by ashutosh450 |
C#
// C# program to find maximum points that can // be collected in a journey from top to bottom // and then back from bottom to top, using System; using System.Collections.Generic; class GFG { static int MAX = 5; static int N = 5; static int M = 5; static int inf = 100000; // Calculating the points at a (row1, col1) && // (row2, col2) from path1 && path2 public static int cost( char [,] grid, int row1, int col1, int row2, int col2) { // If both path is at same cell if (row1 == row2 && col1 == col2) { // If the cell contain *, return 1 if (grid[row1, col1] == '*' ) return 1; // else return 0. return 0; } int ans = 0; // If path 1 contain *, add to answer. if (grid[row1, col1] == '*' ) ans++; // If path contain *, add to answer. if (grid[row2, col2] == '*' ) ans++; return ans; } // Calculate the maximum points that can be // collected. public static int solve( int n, int m, char [,] grid, int [,,] dp, int row1, int col1, int row2) { int col2 = (row1 + col1) - (row2); // If both path reach the bottom right cell if (row1 == n - 1 && col1 == m - 1 && row2 == n - 1 && col2 == m - 1) return 0; // If moving out of grid if (row1 >= n || col1 >= m || row2 >= n || col2 >= m) return -1 * inf; // If already calculated, return the value if (dp[row1, col1, row2] != -1) return dp[row1, col1, row2]; // Variable for 4 options. int ch1 = -1 * inf, ch2 = -1 * inf; int ch3 = -1 * inf, ch4 = -1 * inf; // If path 1 is moving right and path 2 // is moving down. if (col1 + 1 < m && row2 + 1 < n && grid[row1, col1 + 1] != '#' && grid[row2 + 1, col2] != '#' ) ch1 = cost(grid, row1, col1 + 1, row2 + 1, col2) + solve(n, m, grid, dp, row1, col1 + 1, row2 + 1); // If path 1 is moving right and path 2 is moving // right. if (col2 + 1 < m && col1 + 1 < m && grid[row1, col1 + 1] != '#' && grid[row2, col2 + 1] != '#' ) ch2 = cost(grid, row1, col1 + 1, row2, col2 + 1) + solve(n, m, grid, dp, row1, col1 + 1, row2); // If path 1 is moving down and path 2 is moving // right. if (col2 + 1 < m && row1 + 1 < n && grid[row1 + 1, col1] != '#' && grid[row2, col2 + 1] != '#' ) ch3 = cost(grid, row1 + 1, col1, row2, col2 + 1) + solve(n, m, grid, dp, row1 + 1, col1, row2); // If path 1 is moving down and path 2 is moving // down. if (row1 + 1 < n && row2 + 1 < n && grid[row1 + 1, col1] != '#' && grid[row2 + 1, col2] != '#' ) ch4 = cost(grid, row1 + 1, col1, row2 + 1, col2) + solve(n, m, grid, dp, row1 + 1, col1, row2 + 1); // Returning the maximum of 4 options. return dp[row1, col1, row2] = Math.Max( ch1, Math.Max(ch2, Math.Max(ch3, ch4))); } // Wrapper Function public static int wrapper( int n, int m, char [,] grid) { int ans = 0; int [,,] dp = new int [MAX, MAX, MAX]; for ( int i = 0; i < MAX; i++) for ( int j = 0; j < MAX; j++) for ( int k = 0; k < MAX; k++) dp[i, j, k] = -1; // If last bottom right cell is blocked if (grid[n - 1, m - 1] == '#' || grid[0, 0] == '#' ) ans = -1 * inf; // If top left cell contain * if (grid[0, 0] == '*' ) ans++; grid[0, 0] = '.' ; // If bottom right cell contain * if (grid[n - 1, m - 1] == '*' ) ans++; grid[n - 1, m - 1] = '.' ; ans += solve(n, m, grid, dp, 0, 0, 0); return Math.Max(ans, 0); } // Driver Code public static void Main( string [] args) { int n = 5, m = 5; char [,] grid = { { '.' , '*' , '.' , '*' , '.' }, { '*' , '#' , '#' , '#' , '.' }, { '*' , '.' , '*' , '.' , '*' }, { '.' , '#' , '#' , '#' , '*' }, { '.' , '*' , '.' , '*' , '.' } }; Console.WriteLine(wrapper(n, m, grid)); } } // This code is contributed by phasing17 |
Javascript
<script> // JavaScript program to find maximum points // that can be collected in a journey from // top to bottom && then back from bottom to top, const MAX = 5 const N = 5 const M = 5 const inf = 100000 // Calculating the points at a (row1, col1) && // (row2, col2) from path1 && path2 function cost(grid, row1, col1, row2, col2){ // If both path is at same cell if (row1 == row2 && col1 == col2){ // If the cell contain *, return 1 if (grid[row1][col1] == '*' ){ return 1 } // else return 0. return 0 } let ans = 0 // If path 1 contain *, add to answer. if (grid[row1][col1] == '*' ) ans += 1 // If path contain *, add to answer. if (grid[row2][col2] == '*' ) ans += 1 return ans } // Calculate the maximum points that can be // collected. function solve(n, m, grid, dp, row1, col1, row2){ let col2 = (row1 + col1) - (row2) // If both path reach the bottom right cell if (row1 == n - 1 && col1 == m - 1 && row2 == n - 1 && col2 == m - 1) return 0 // If moving out of grid if (row1 >= n || col1 >= m || row2 >= n || col2 >= m) return -1 * inf // If already calculated, return the value if (dp[row1][col1][row2] != -1) return dp[row1][col1][row2] // Variable for 4 options. let ch1 = -1 * inf let ch2 = -1 * inf let ch3 = -1 * inf let ch4 = -1 * inf // If path 1 is moving right && path 2 // is moving down. if (col1 + 1 < m && row2 + 1 < n && grid[row1][col1 + 1] != '#' && grid[row2 + 1][col2] != '#' ){ ch1 = cost(grid, row1, col1 + 1, row2 + 1, col2) + solve(n, m, grid, dp, row1, col1 + 1, row2 + 1) } // If path 1 is moving right && path 2 // is moving right. if (col1 + 1 < m && col2 + 1 < m && grid[row1][col1 + 1] != '#' && grid[row2][col2 + 1] != '#' ) ch2 = cost(grid, row1, col1 + 1, row2, col2 + 1) + solve(n, m, grid, dp, row1, col1 + 1, row2) // If path 1 is moving down && path 2 // is moving right. if (row1 + 1 < n && col2 + 1 < m && grid[row1 + 1][col1] != '#' && grid[row2][col2 + 1] != '#' ) ch3 = cost(grid, row1 + 1, col1, row2, col2 + 1) + solve(n, m, grid, dp, row1 + 1, col1, row2) // If path 1 is moving down && path 2 is moving down. if (row1 + 1 < n && row2 + 1 < n && grid[row1 + 1][col1] != '#' && grid[row2 + 1][col2] != '#' ) ch4 = cost(grid, row1 + 1, col1, row2 + 1, col2) + solve(n, m, grid, dp, row1 + 1, col1, row2 + 1) // Returning the maximum of 4 options. dp[row1][col1][row2] = Math.max(ch1, ch2, ch3, ch4) return dp[row1][col1][row2] } // Wrapper Function function wrapper(n, m, grid){ let ans = 0 let dp = new Array(MAX) for (let i = 0; i < MAX; i++) { dp[i] = new Array(MAX); for (let j = 0; j < MAX; j++) { dp[i][j] = new Array(MAX).fill(-1); } } // If last bottom right cell is blocked if (grid[n - 1][m - 1] == '#' || grid[0][0] == '#' ) ans = -1 * inf // If top left cell contain * if (grid[0][0] == '*' ) ans += 1 grid[0][0] = '.' // If bottom right cell contain * if (grid[n - 1][m - 1] == '*' ) ans += 1 grid[n - 1][m - 1] = '.' ans += solve(n, m, grid, dp, 0, 0, 0) return Math.max(ans, 0) } // Driver Code let n = 5 let m = 5 let grid = [[ '.' , '*' , '.' , '*' , '.' ], [ '*' , '#' , '#' , '#' , '.' ], [ '*' , '.' , '*' , '.' , '*' ], [ '.' , '#' , '#' , '#' , '*' ], [ '.' , '*' , '.' , '*' , '.' ]] document.write(wrapper(n, m, grid)) // This code is contributed by shinjanpatra </script> |
8
Time Complexity: O(N^3)
Space Complexity: O(MAX3)
This article is contributed by Anuj Chauhan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!