Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMaximum number of times N can be divided by distinct powers of...

Maximum number of times N can be divided by distinct powers of prime integers

Given an integer N, the task is to calculate the maximum number of times N can be divided by an integer K, where K is a power of a prime integer and the value of K is always distinct.

Example:

Input: N = 24
Output: 3
Explanation: In the first operation, K = 2 (=21). Hence, the value of N becomes N = 24/2 = 12. In the second operation, K = 3. Hence, N = 12/3 = 4. In the 3rd operation, K = 4 (=22). Hence, N = 4/4 = 1, which can not be further divided. Therefore, {2, 3, 4} is the largest set 3 integers having distinct powers of prime integers than can divide N.

Input: N = 100
Output: 2

Approach: The given problem can be solved using a greedy approach. The idea is to divide the number by all of its prime factors in increasing order of their value as well as power. Iterate using a variable i in the range [2, ?N] and if i divides N, then divide N with increasing powers of i (i.e, 1, 2, 3…) until it is divisible with it. Maintain the count of the number of divisions in a variable which is the required answer.

Below is the implementation of the above approach:

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Program to find maximum number of
// times N can be divided by distinct
// powers of prime integers
int maxDivisions(int N)
{
    // Stores the required count
    int cnt = 0;
 
    int range = sqrt(N);
 
    // Loop to iterate in range [2, ?N]
    for (int i = 2; i <= range; i++) {
 
        // If i divides N
        if (N % i == 0) {
            int j = i;
 
            // Divide N with increasing
            // powers of i
            while (N % j == 0 && N) {
                N = N / j;
                // Update j
                j *= i;
 
                // Increment cnt
                cnt++;
            }
 
            // Remove the remaining power
            // of i to avoid repetition
            while (N % i == 0) {
                N /= i;
            }
        }
    }
 
    // Return Answer
    return cnt;
}
 
// Driver Code
int main()
{
    int N = 100;
    cout << maxDivisions(N);
    return 0;
}


Java




// JAVA program of the above approach
import java.util.*;
class GFG
{
 
  // Program to find maximum number of
  // times N can be divided by distinct
  // powers of prime integers
  public static int maxDivisions(int N)
  {
 
    // Stores the required count
    int cnt = 0;
 
    double range = Math.sqrt(N);
 
    // Loop to iterate in range [2, ?N]
    for (int i = 2; i <= range; i++) {
 
      // If i divides N
      if (N % i == 0) {
        int j = i;
 
        // Divide N with increasing
        // powers of i
        while (N % j == 0 && N != 0) {
          N = N / j;
          // Update j
          j *= i;
 
          // Increment cnt
          cnt++;
        }
 
        // Remove the remaining power
        // of i to avoid repetition
        while (N % i == 0) {
          N /= i;
        }
      }
    }
 
    // Return Answer
    return cnt;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int N = 100;
    System.out.print(maxDivisions(N));
  }
}
 
// This code is contributed by Taranpreet


Python3




# Python code for the above approach
from math import ceil, sqrt
 
# Program to find maximum number of
# times N can be divided by distinct
# powers of prime integers
def maxDivisions(N):
 
    # Stores the required count
    cnt = 0;
 
    _range = ceil(sqrt(N));
 
    # Loop to iterate in range [2, ?N]
    for i in range(2, _range + 1):
 
        # If i divides N
        if (N % i == 0):
            j = i;
 
            # Divide N with increasing
            # powers of i
            while (N % j == 0 and N):
                N = N / j;
                # Update j
                j *= i;
 
                # Increment cnt
                cnt += 1
 
            # Remove the remaining power
            # of i to avoid repetition
            while (N % i == 0):
                N /= i;
             
    # Return Answer
    return cnt;
 
# Driver Code
N = 100;
print(maxDivisions(N));
 
# This code is contributed by gfgking


C#




// C# program to implement
// the above approach
using System;
 
class GFG
{
 
// Program to find maximum number of
  // times N can be divided by distinct
  // powers of prime integers
  public static int maxDivisions(int N)
  {
 
    // Stores the required count
    int cnt = 0;
 
    double range = Math.Sqrt(N);
 
    // Loop to iterate in range [2, ?N]
    for (int i = 2; i <= range; i++) {
 
      // If i divides N
      if (N % i == 0) {
        int j = i;
 
        // Divide N with increasing
        // powers of i
        while (N % j == 0 && N != 0) {
          N = N / j;
          // Update j
          j *= i;
 
          // Increment cnt
          cnt++;
        }
 
        // Remove the remaining power
        // of i to avoid repetition
        while (N % i == 0) {
          N /= i;
        }
      }
    }
 
    // Return Answer
    return cnt;
  }
 
// Driver Code
public static void Main()
{
    int N = 100;
    Console.Write(maxDivisions(N));
}
}
 
// This code is contributed by sanjoy_62.


Javascript




<script>
        // JavaScript code for the above approach
 
        // Program to find maximum number of
        // times N can be divided by distinct
        // powers of prime integers
        function maxDivisions(N)
        {
         
            // Stores the required count
            let cnt = 0;
 
            let range = Math.sqrt(N);
 
            // Loop to iterate in range [2, ?N]
            for (let i = 2; i <= range; i++) {
 
                // If i divides N
                if (N % i == 0) {
                    let j = i;
 
                    // Divide N with increasing
                    // powers of i
                    while (N % j == 0 && N) {
                        N = N / j;
                        // Update j
                        j *= i;
 
                        // Increment cnt
                        cnt++;
                    }
 
                    // Remove the remaining power
                    // of i to avoid repetition
                    while (N % i == 0) {
                        N /= i;
                    }
                }
            }
 
            // Return Answer
            return cnt;
        }
 
        // Driver Code
        let N = 100;
        document.write(maxDivisions(N));
 
       // This code is contributed by Potta Lokesh
    </script>


 
 

Output

2

 

Time Complexity: O(?N)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments