Monday, January 13, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMaximum number of envelopes that can be put inside other bigger envelopes

Maximum number of envelopes that can be put inside other bigger envelopes

Given N number of envelopes, as {W, H} pair, where W as the width and H as the height. One envelope can fit into another if and only if both the width and height of one envelope is greater than the width and height of the other envelope. Find the maximum number of envelopes that can be put inside another envelope and so on. Rotation of envelope is not allowed.

Examples:

Input: envelope[] = {{4, 3}, {5, 3}, {5, 6}, {1, 2}}
Output: 3
Explanation: 
The maximum number of envelopes that can be put into another envelope 
is 3.
({1, 2}, {4, 3}, {5, 6})

Input: envelope[] = {{3, 6}, {5, 4}, {4, 8}, {6, 9}, {10, 7}, {12, 12}}
Output: 4
Explanation:
The maximum number of envelopes that can be put into another envelope is 4.
 ({3, 6}, {4, 8}, {6, 9}, {12, 12})

Naive Approach: This problem is similar to the Longest Increasing Subsequence problem of Dynamic Programming. The idea is to sort the envelopes in non-decreasing order and for each envelope check the number of envelopes that can be put inside that envelope. Follow the steps below to solve the problem:

  • Sort the array in the non-decreasing order of width and height.
  • Initialize a dp[] array, where dp[i] stores the number of envelopes that can be put inside with envelope[i] as the largest envelope.
  • For each envelope[i], loop through the envelopes smaller than itself and check if the width and the height of the smaller envelope is strictly less than that of envelope[i]. If it is less, than the smaller envelope can be put inside envelope[i].
  • The maximum of the dp[] array gives the maximum number of envelopes that can be put inside one another.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the maximum
// number of envelopes that can be
// inserted into another envelopes
int maxEnvelopes(vector<vector<int> > envelopes)
{
    // Number of envelopes
    int N = envelopes.size();
 
    if (N == 0)
        return N;
 
    // Sort the envelopes in
    // non-decreasing order
    sort(envelopes.begin(),
        envelopes.end());
 
    // Initialize dp[] array
    int dp[N];
 
    // To store the result
    int max_envelope = 1;
 
    dp[0] = 1;
 
    // Loop through the array
    for (int i = 1; i < N; ++i) {
        dp[i] = 1;
 
        // Find envelopes count for
        // each envelope
        for (int j = 0; j < i; ++j) {
 
            if (envelopes[i][0] > envelopes[j][0]
                && envelopes[i][1] > envelopes[j][1]
                && dp[i] < dp[j] + 1)
                dp[i] = dp[j] + 1;
        }
 
        // Store maximum envelopes count
        max_envelope = max(max_envelope,
                        dp[i]);
    }
 
    // Return the result
    return max_envelope;
}
 
// Driver Code
int main()
{
    // Given the envelopes
    vector<vector<int> > envelopes
        = { { 4, 3 }, { 5, 3 }, { 5, 6 }, { 1, 2 } };
 
    // Function Call
    cout << maxEnvelopes(envelopes);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
import java.lang.*;
 
class GFG{
     
// Function that returns the maximum
// number of envelopes that can be
// inserted into another envelopes
static int maxEnvelopes(int[][] envelopes)
{
     
    // Number of envelopes
    int N = envelopes.length;
     
    if (N == 0)
        return N;
     
    // Sort the envelopes in
    // non-decreasing order
    Arrays.sort(envelopes,
               (a, b) -> (a[0] != b[0]) ?
                          a[0] - b[0] :
                          a[1] - b[1]);
                           
    // Initialize dp[] array
    int[] dp = new int[N];
     
    // To store the result
    int max_envelope = 1;
     
    dp[0] = 1;
     
    // Loop through the array
    for(int i = 1; i < N; ++i)
    {
        dp[i] = 1;
         
        // Find envelopes count for
        // each envelope
        for(int j = 0; j < i; ++j)
        {
             
            if (envelopes[i][0] > envelopes[j][0] &&
                envelopes[i][1] > envelopes[j][1] &&
                          dp[i] < dp[j] + 1)
                dp[i] = dp[j] + 1;
        }
         
        // Store maximum envelopes count
        max_envelope = Math.max(max_envelope, dp[i]);
    }
     
    // Return the result
    return max_envelope;
}
 
// Driver Code
public static void main (String[] args)
{
     
    // Given the envelopes
    int[][] envelopes = { { 4, 3 }, { 5, 3 },
                          { 5, 6 }, { 1, 2 } };
     
    // Function call
    System.out.println(maxEnvelopes(envelopes));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
 
# Function that returns the maximum
# number of envelopes that can be
# inserted into another envelopes
def maxEnvelopes(envelopes):
 
    # Number of envelopes
    N = len(envelopes)
 
    if (N == 0):
        return N
 
    # Sort the envelopes in
    # non-decreasing order
    envelopes = sorted(envelopes)
 
    # Initialize dp[] array
    dp = [0] * N
 
    # To store the result
    max_envelope = 1
 
    dp[0] = 1
 
    # Loop through the array
    for i in range(1, N):
        dp[i] = 1
 
        # Find envelopes count for
        # each envelope
        for j in range(i):
 
            if (envelopes[i][0] > envelopes[j][0]
                and envelopes[i][1] > envelopes[j][1]
                and dp[i] < dp[j] + 1):
                dp[i] = dp[j] + 1
 
        # Store maximum envelopes count
        max_envelope = max(max_envelope, dp[i])
 
    # Return the result
    return max_envelope
 
# Driver Code
if __name__ == '__main__':
 
    # Given the envelopes
    envelopes = [ [ 4, 3 ], [ 5, 3 ],
                [ 5, 6 ], [ 1, 2 ] ]
 
    # Function Call
    print(maxEnvelopes(envelopes))
 
# This code is contributed by Mohit Kumar


C#




// C# program to implement above approach
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG
{
    // Function that returns the maximum
    // number of envelopes that can be
    // inserted into another envelopes
    static int maxEnvelopes(int[][] envelopes)
    {
         
        // Number of envelopes
        int N = envelopes.Length;
         
        if (N == 0){
            return N;
        }
         
        // Sort the envelopes in
        // non-decreasing order
        Array.Sort(envelopes, new comp());
                             
        // Initialize dp[] array
        int[] dp = new int[N];
         
        // To store the result
        int max_envelope = 1;
         
        dp[0] = 1;
         
        // Loop through the array
        for(int i = 1 ; i < N ; ++i)
        {
            dp[i] = 1;
             
            // Find envelopes count for
            // each envelope
            for(int j = 0 ; j < i ; ++j)
            {
                 
                if (envelopes[i][0] > envelopes[j][0] && envelopes[i][1] > envelopes[j][1] && dp[i] < dp[j] + 1){
                    dp[i] = dp[j] + 1;
                }
            }
             
            // Store maximum envelopes count
            max_envelope = Math.Max(max_envelope, dp[i]);
        }
         
        // Return the result
        return max_envelope;
    }
 
    // Driver code
    public static void Main(string[] args){
 
        // Given the envelopes
        int[][] envelopes = new int[][]{
            new int[]{ 4, 3 },
            new int[]{ 5, 3 },
            new int[]{ 5, 6 },
            new int[]{ 1, 2 }
        };
         
        // Function call
        Console.WriteLine(maxEnvelopes(envelopes));
         
    }
}
 
class comp : IComparer<int[]>{
    public int Compare(int[] a, int[] b)
    {
        if(a[0] != b[0]) return a[0] - b[0];
        return a[1] - b[1];
    }
}
 
// This code is contributed by entertain2022.


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function that returns the maximum
// number of envelopes that can be
// inserted into another envelopes
function maxEnvelopes(envelopes)
{
    // Number of envelopes
    var N = envelopes.length;
 
    if (N == 0)
        return N;
 
    // Sort the envelopes in
    // non-decreasing order
    envelopes.sort();
 
    // Initialize dp[] array
    var dp = Array(N);
 
    // To store the result
    var max_envelope = 1;
 
    dp[0] = 1;
 
    // Loop through the array
    for (var i = 1; i < N; ++i) {
        dp[i] = 1;
 
        // Find envelopes count for
        // each envelope
        for (var j = 0; j < i; ++j) {
 
            if (envelopes[i][0] > envelopes[j][0]
                && envelopes[i][1] > envelopes[j][1]
                && dp[i] < dp[j] + 1)
                dp[i] = dp[j] + 1;
        }
 
        // Store maximum envelopes count
        max_envelope = Math.max(max_envelope,
                        dp[i]);
    }
 
    // Return the result
    return max_envelope;
}
 
// Driver Code
 
// Given the envelopes
var envelopes
    = [ [ 4, 3 ], [ 5, 3 ], [ 5, 6 ], [ 1, 2 ] ];
     
// Function Call
document.write( maxEnvelopes(envelopes));
 
 
</script>


Output: 

3

Time Complexity: O(N2)
Auxiliary Space: O(N)

Efficient Approach:To optimize the naive approach the idea is to use the concept of Binary Search and Longest Increasing Subsequence. Sorting the envelopes in the increasing order of width and the decreasing order of height if width is same, reduces the problem to finding the longest increasing sequence of height of the envelope. This approach works as width is already sorted in increasing order and only maximum increasing sequence of height is sufficient to find the maximum number of envelopes. The efficient way to find the Longest Increasing Sequence in N×log(N) approach is discussed in this article.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns the maximum
// number of envelopes that can be
// inserted into another envelopes
int maxEnvelopes(vector<vector<int> >& envelopes)
{
    // Number of envelopes
    int N = envelopes.size();
 
    if (N == 0)
        return N;
 
    // Sort the envelopes in increasing
    // order of width and decreasing order
    // of height is width is same
    sort(envelopes.begin(), envelopes.end(),
        [](vector<int>& a, vector<int>& b) {
            return a[0] < b[0]
                    or (a[0] == b[0] and a[1] > b[1]);
        });
 
    // To store the longest increasing
    // sequence of height
    vector<int> dp;
 
    // Finding LIS of the heights
    // of the envelopes
    for (int i = 0; i < N; ++i) {
        auto iter = lower_bound(dp.begin(),
                                dp.end(),
                                envelopes[i][1]);
 
        if (iter == dp.end())
            dp.push_back(envelopes[i][1]);
        else if (envelopes[i][1] < *iter)
            *iter = envelopes[i][1];
    }
 
    // Return the result
    return dp.size();
}
 
// Driver Code
int main()
{
    // Given the envelopes
    vector<vector<int> > envelopes
        = { { 4, 3 }, { 5, 3 }, { 5, 6 }, { 1, 2 } };
 
    // Function Call
    cout << maxEnvelopes(envelopes);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
import java.util.Arrays;
import java.util.Collections;
 
class GFG{
 
  // Function that returns the maximum
  // number of envelopes that can be
  // inserted into another envelopes
  static int maxEnvelopes(int[][] envelopes)
  {
 
    // Number of envelopes
    int N = envelopes.length;
 
    if (N == 0)
      return N;
 
    // Sort the envelopes in increasing
    // order of width and decreasing order
    // of height is width is same
    Arrays.sort(envelopes,new Comparator<int[]>() {
      @Override
      public int compare(int[] a,
                         int[] b)
      {
        return a[0] == b[0] ? b[1] - a[1] : a[0] - b[0];;
      }
    });
 
    // To store the longest increasing
    // sequence of height
    ArrayList<Integer> dp = new ArrayList<Integer>();
 
    // Finding LIS of the heights
    // of the envelopes
    for (int i = 0; i < N; ++i) {
      int iter = Collections.binarySearch(dp, envelopes[i][1]);
      if (iter < 0)
        iter=Math.abs(iter)-1;
 
      if(iter == dp.size())
        dp.add(envelopes[i][1]);
      else if (envelopes[i][1] < dp.get(iter))
        dp.set(iter,envelopes[i][1]);
    }
 
    // Return the result
    return dp.size();
  }
 
  // Driver Code
  public static void main (String[] args)
  {
 
    // Given the envelopes
    int[][] envelopes = { { 4, 3 }, { 5, 3 }, { 5, 6 }, { 1, 2 } };
 
    // Function Call
    System.out.println(maxEnvelopes(envelopes));
  }
}
 
// This code is contributed by Aman Kumar


Python3




# Python program for the above approach
from bisect import bisect_left as lower_bound
 
# Function that returns the maximum
# number of envelopes that can be
# inserted into another envelopes
def maxEnvelopes(envelopes):
    # Number of envelopes
    N = len(envelopes)
     
    if(N == 0):
        return N
     
    # Sort the envelopes in increasing
    # order of width and decreasing order
    # of height is width is same
    envelopes.sort()
     
    # To store the longest increasing
    # sequence of height
    dp = []
     
    # Finding LIS of the heights
    # of the envelopes
    for i in range(N):
        iter = lower_bound(dp,envelopes[i][1])
        if(iter == len(dp)):
            dp.append(envelopes[i][1])
        elif(envelopes[i][1] < dp[iter]):
            dp[iter] = envelopes[i][1]
     
    # Return the result
    return len(dp)
 
# Driver Code
 
# Given the envelopes
envelopes = [[4, 3], [5, 3], [5, 6], [1, 2]]
 
# Function Call
print(maxEnvelopes(envelopes))
 
# This code is contributed by Pushpesh Raj


C#




using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG
{
   
  // Function that returns the maximum
  // number of envelopes that can be
  // inserted into another envelopes
  static int maxEnvelopes(int[][] envelopes)
  {
     
    // Number of envelopes
    int N = envelopes.Length;
 
    if (N == 0)
      return N;
 
    // Sort the envelopes in increasing
    // order of width and decreasing order
    // of height is width is same
    Array.Sort(envelopes, (a, b) = > a[0] - b[0]);
 
    // To store the longest increasing
    // sequence of height
    List<int> dp = new List<int>();
 
    // Finding LIS of the heights
    // of the envelopes
    for (int i = 0; i < N; ++i) {
      int iter = dp.BinarySearch(envelopes[i][1]);
      if (iter < 0)
        iter = ~iter;
 
      if (iter == dp.Count)
        dp.Add(envelopes[i][1]);
      else if (envelopes[i][1] < dp[iter])
        dp[iter] = envelopes[i][1];
    }
 
    // Return the result
    return dp.Count;
  }
 
  // Driver Code
  static void Main(string[] args)
  {
    // Given the envelopes
    int[][] envelopes = new int[4][];
    envelopes[0] = new int[] { 4, 3 };
    envelopes[1] = new int[] { 5, 3 };
    envelopes[2] = new int[] { 5, 6 };
    envelopes[3] = new int[] { 1, 2 };
 
    // Function Call
    Console.WriteLine(maxEnvelopes(envelopes));
  }
}
 
// This code is contributed by lokeshpotta20.


Javascript




// JavaScript program for the above approach
 
// Function that returns the maximum
// number of envelopes that can be
// inserted into another envelopes
function maxEnvelopes(envelopes) {
  // Number of envelopes
  let N = envelopes.length;
 
  if (N === 0) return N;
 
  // Sort the envelopes in increasing
  // order of width and decreasing order
  // of height is width is same
  envelopes.sort((a, b) => {
    if (a[0] === b[0]) {
      return b[1] - a[1];
    } else {
      return a[0] - b[0];
    }
  });
 
  // To store the longest increasing
  // sequence of height
  let dp = [];
 
  // Finding LIS of the heights
  // of the envelopes
  for (let i = 0; i < N; i++) {
    let iter = dp.findIndex(x => x >= envelopes[i][1]);
    if (iter === -1) {
      dp.push(envelopes[i][1]);
    } else if (envelopes[i][1] < dp[iter]) {
      dp[iter] = envelopes[i][1];
    }
  }
 
  // Return the result
  return dp.length;
}
 
// Driver Code
let envelopes = [[4, 3], [5, 3], [5, 6], [1, 2]];
 
// Function Call
console.log(maxEnvelopes(envelopes));
// this contributed by devendra


Output: 

3

Time Complexity: O(N*log(N))
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments