Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximum number formed from array with K number of adjacent swaps allowed

Maximum number formed from array with K number of adjacent swaps allowed

Given an array a[ ] and the number of adjacent swap operations allowed are K. The task is to find the max number that can be formed using these swap operations. 

Examples: 

Input : a[]={ 1, 2, 9, 8, 1, 4, 9, 9, 9 }, K = 4 
Output : 9 8 1 2 1 4 9 9 9 
After 1st swap a[ ] becomes 1 9 2 8 1 4 9 9 9 
After 2nd swap a[ ] becomes 9 1 2 8 1 4 9 9 9 
After 3rd swap a[ ] becomes 9 1 8 2 1 4 9 9 9 
After 4th swap a[ ] becomes 9 8 1 2 1 4 9 9 9

Input : a[]={2, 5, 8, 7, 9}, K = 2 
Output : 8 2 5 7 9 

Approach: 

  • Starting from the first digit, check for the next K digits and store the index of the largest number.
  • Bring that greatest digit to the top by swapping the adjacent digits.
  • Reduce to the value of K by the number of adjacent swaps done.
  • Repeat the above steps until the number of swaps becomes zero.

Below is the implementation of the above approach 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the
// elements of the array
void print(int arr[], int n)
{
    for (int i = 0; i < n; i++) {
        cout << arr[i] << " ";
    }
    cout << endl;
}
 
// Exchange array elements one by
// one from  right to left side
// starting from the current position
// and ending at the target position
void swapMax(int* arr, int target_position,
                      int current_position)
{
    int aux = 0;
    for (int i = current_position;
         i > target_position; i--) {
        aux = arr[i - 1];
        arr[i - 1] = arr[i];
        arr[i] = aux;
    }
}
 
// Function to return the
// maximum number array
void maximizeArray(int* arr,
                   int length, int swaps)
{
    // Base condition
    if (swaps == 0)
        return;
 
    // Start from the first index
    for (int i = 0; i < length; i++) {
        int max_index = 0, max = INT_MIN;
 
        // Search for the next K elements
        int limit = (swaps + i) > length ?
                        length : swaps + i;
 
        // Find index of the maximum
        // element in next K elements
        for (int j = i; j <= limit; j++) {
            if (arr[j] > max) {
                max = arr[j];
                max_index = j;
            }
        }
 
        // Update the value of
        // number of swaps
        swaps -= (max_index - i);
 
        // Update the array elements by
        // swapping adjacent elements
        swapMax(arr, i, max_index);
 
        if (swaps == 0)
            break;
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 9, 8, 1, 4, 9, 9, 9 };
    int length = sizeof(arr) / sizeof(int);
    int swaps = 4;
    maximizeArray(arr, length, swaps);
 
    print(arr, length);
 
    return 0;
}


Java




// Java implementation of the above approach
class GFG
{
 
// Function to print the
// elements of the array
static void print(int arr[], int n)
{
    for (int i = 0; i < n; i++)
    {
        System.out.print(arr[i] + " ");
    }
    System.out.println();
}
 
// Exchange array elements one by
// one from right to left side
// starting from the current position
// and ending at the target position
static void swapMax(int[] arr, int target_position,
                    int current_position)
{
    int aux = 0;
    for (int i = current_position;
        i > target_position; i--)
    {
        aux = arr[i - 1];
        arr[i - 1] = arr[i];
        arr[i] = aux;
    }
}
 
// Function to return the
// maximum number array
static void maximizeArray(int[] arr,
                int length, int swaps)
{
    // Base condition
    if (swaps == 0)
        return;
 
    // Start from the first index
    for (int i = 0; i < length; i++)
    {
        int max_index = 0, max = Integer.MIN_VALUE;
 
        // Search for the next K elements
        int limit = (swaps + i) > length ?
                        length : swaps + i;
 
        // Find index of the maximum
        // element in next K elements
        for (int j = i; j <= limit; j++)
        {
            if (arr[j] > max)
            {
                max = arr[j];
                max_index = j;
            }
        }
 
        // Update the value of
        // number of swaps
        swaps -= (max_index - i);
 
        // Update the array elements by
        // swapping adjacent elements
        swapMax(arr, i, max_index);
 
        if (swaps == 0)
            break;
    }
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 9, 8, 1, 4, 9, 9, 9 };
    int length = arr.length;
    int swaps = 4;
    maximizeArray(arr, length, swaps);
 
    print(arr, length);
}
}
 
/* This code is contributed by PrinciRaj1992 */


Python3




# Python3 implementation of the above approach
import sys
 
# Function to print the
# elements of the array
def print_ele(arr, n) :
     
    for i in range(n) :
        print(arr[i],end=" ");
         
    print();
 
# Exchange array elements one by
# one from right to left side
# starting from the current position
# and ending at the target position
def swapMax(arr, target_position,
                    current_position) :
                         
    aux = 0;
    for i in range(current_position, target_position,-1) :
        aux = arr[i - 1];
        arr[i - 1] = arr[i];
        arr[i] = aux;
 
# Function to return the
# maximum number array
def maximizeArray(arr, length, swaps) :
 
    # Base condition
    if (swaps == 0) :
        return;
 
    # Start from the first index
    for i in range(length) :
        max_index = 0; max = -(sys.maxsize-1);
         
        # Search for the next K elements
        if (swaps + i) > length :
            limit = length
        else:
            limit = swaps + i
             
        # Find index of the maximum
        # element in next K elements
        for j in range(i, limit + 1) :
            if (arr[j] > max) :
                max = arr[j];
                max_index = j;
                 
        # Update the value of
        # number of swaps
        swaps -= (max_index - i);
 
        # Update the array elements by
        # swapping adjacent elements
        swapMax(arr, i, max_index);
 
        if (swaps == 0) :
            break;
 
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 9, 8, 1, 4, 9, 9, 9 ];
    length = len(arr);
    swaps = 4;
    maximizeArray(arr, length, swaps);
 
    print_ele(arr, length);
 
# This code is contributed by AnkitRai01


C#




// C# program to find the sum
// and product of k smallest and
// k largest prime numbers in an array
 
using System;
     
class GFG
{
 
// Function to print the
// elements of the array
static void print(int []arr, int n)
{
    for (int i = 0; i < n; i++)
    {
        Console.Write(arr[i] + " ");
    }
    Console.WriteLine();
}
 
// Exchange array elements one by
// one from right to left side
// starting from the current position
// and ending at the target position
static void swapMax(int[] arr, int target_position,
                    int current_position)
{
    int aux = 0;
    for (int i = current_position;
        i > target_position; i--)
    {
        aux = arr[i - 1];
        arr[i - 1] = arr[i];
        arr[i] = aux;
    }
}
 
// Function to return the
// maximum number array
static void maximizeArray(int[] arr,
                int length, int swaps)
{
    // Base condition
    if (swaps == 0)
        return;
 
    // Start from the first index
    for (int i = 0; i < length; i++)
    {
        int max_index = 0, max = int.MinValue;
 
        // Search for the next K elements
        int limit = (swaps + i) > length ?
                        length : swaps + i;
 
        // Find index of the maximum
        // element in next K elements
        for (int j = i; j <= limit; j++)
        {
            if (arr[j] > max)
            {
                max = arr[j];
                max_index = j;
            }
        }
 
        // Update the value of
        // number of swaps
        swaps -= (max_index - i);
 
        // Update the array elements by
        // swapping adjacent elements
        swapMax(arr, i, max_index);
 
        if (swaps == 0)
            break;
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 9, 8, 1, 4, 9, 9, 9 };
    int length = arr.Length;
    int swaps = 4;
    maximizeArray(arr, length, swaps);
 
    print(arr, length);
}
}
 
/* This code is contributed by PrinciRaj1992 */


Javascript




<script>
 
// JavaScript implementation of the above approach
 
 
// Function to print the
// elements of the array
function print(arr, n) {
    for (let i = 0; i < n; i++) {
        document.write(arr[i] + " ");
    }
    document.write("<br>");
}
 
// Exchange array elements one by
// one from right to left side
// starting from the current position
// and ending at the target position
function swapMax(arr, target_position, current_position) {
    let aux = 0;
    for (let i = current_position; i > target_position; i--) {
        aux = arr[i - 1];
        arr[i - 1] = arr[i];
        arr[i] = aux;
    }
}
 
// Function to return the
// maximum number array
function maximizeArray(arr, length, swaps) {
    // Base condition
    if (swaps == 0)
        return;
 
    // Start from the first index
    for (let i = 0; i < length; i++) {
        let max_index = 0, max = Number.MIN_SAFE_INTEGER;
 
        // Search for the next K elements
        let limit = (swaps + i) > length ?
            length : swaps + i;
 
        // Find index of the maximum
        // element in next K elements
        for (let j = i; j <= limit; j++) {
            if (arr[j] > max) {
                max = arr[j];
                max_index = j;
            }
        }
 
        // Update the value of
        // number of swaps
        swaps -= (max_index - i);
 
        // Update the array elements by
        // swapping adjacent elements
        swapMax(arr, i, max_index);
 
        if (swaps == 0)
            break;
    }
}
 
// Driver code
 
let arr = [1, 2, 9, 8, 1, 4, 9, 9, 9];
let length = arr.length;
let swaps = 4;
maximizeArray(arr, length, swaps);
 
print(arr, length);
 
// This code is contributed by gfgking
 
</script>


Output: 

9 8 1 2 1 4 9 9 9

 

Time Complexity: O(N*N) where N is the length of given array.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments