Given a matrix mat[][] and an integer K, the task is to find the maximum neighbor within an absolute distance of K for each element of the matrix.
In other words for each Matrix[i][j] find maximum Matrix[p][q] such that abs (i-p) + abs (j-q) ? K.
Examples:
Input: mat[][] = {{1, 2}, {4, 5}}, K = 1
Output: {{4, 5}, {5, 5}}
Explanation:
Maximum neighbour to the element mat[0][0] = 4 (Distance = 1)
Maximum neighbour to the element mat[0][1] = 5 (Distance = 1)
Maximum neighbour to the element mat[1][0] = 5 (Distance = 1)
Maximum neighbour to the element mat[1][1] = 5 (Distance = 0)
Input: mat[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, K = 2
Output: {{7, 8, 9}, {8, 9, 9}, {9, 9, 9}}
Approach: The idea is to iterate over a loop from 1 to K, to choose the element from neighbors with distance less than or equal to K. Each time, Iterate over the matrix to find the maximum adjacent element for each element of the matrix.
Below is the implementation of the above approach:
C++
// C++ implementation to find the // maximum neighbor element within // the distance of less than K #include <bits/stdc++.h> using namespace std; // Function to print the matrix void printMatrix(vector<vector< int > > A) { // Loop to iterate over the matrix for ( int i = 0; i < A.size(); i++) { for ( int j = 0; j < A[0].size(); j++) cout << A[i][j] << ' ' ; cout << '\n' ; } } // Function to find the maximum // neighbor within the distance // of less than equal to K vector<vector< int > > getMaxNeighbour( vector<vector< int > >& A, int K) { vector<vector< int > > ans = A; // Loop to find the maximum // element within the distance // of less than K for ( int q = 1; q <= K; q++) { for ( int i = 0; i < A.size(); i++) { for ( int j = 0; j < A[0].size(); j++) { int maxi = ans[i][j]; if (i > 0) maxi = max( maxi, ans[i - 1][j]); if (j > 0) maxi = max( maxi, ans[i][j - 1]); if (i < A.size() - 1) maxi = max( maxi, ans[i + 1][j]); if (j < A[0].size() - 1) maxi = max( maxi, ans[i][j + 1]); A[i][j] = maxi; } } ans = A; } return ans; } // Driver Code int main() { vector<vector< int > > B = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; printMatrix(getMaxNeighbour(B, 2)); return 0; } |
Java
// Java implementation to find the // maximum neighbor element within // the distance of less than K import java.util.*; class GFG { // Function to print the matrix static void printMatrix( int [][] A) { // Loop to iterate over the matrix for ( int i = 0 ; i < A.length; i++) { for ( int j = 0 ; j < A[ 0 ].length; j++) System.out.print(A[i][j] + " " ); System.out.print( '\n' ); } } // Function to copy content of one matrix into another static void copyMatrix( int [][] A, int [][] B) { int row = B.length; int col = B[ 0 ].length; for ( int i = 0 ; i < row; i++) { for ( int j = 0 ; j < col; j++) { A[i][j] = B[i][j]; } } } // Function to find the maximum // neighbor within the distance // of less than equal to K static int [][] getMaxNeighbour( int [][] A, int K) { int [][] ans = new int [A.length][A[ 0 ].length]; copyMatrix(ans, A); // Loop to find the maximum // element within the distance // of less than K for ( int q = 1 ; q <= K; q++) { for ( int i = 0 ; i < A.length; i++) { for ( int j = 0 ; j < A[ 0 ].length; j++) { int maxi = ans[i][j]; if (i > 0 ) maxi = Math.max(maxi, ans[i - 1 ][j]); if (j > 0 ) maxi = Math.max(maxi, ans[i][j - 1 ]); if (i < A.length - 1 ) maxi = Math.max(maxi, ans[i + 1 ][j]); if (j < A[ 0 ].length - 1 ) maxi = Math.max(maxi, ans[i][j + 1 ]); A[i][j] = maxi; } } copyMatrix(ans, A); } return ans; } // Driver Code public static void main(String[] args) { int [][] B = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; printMatrix(getMaxNeighbour(B, 2 )); } } // This code is contributed by Princi Singh |
Python3
# Python3 implementation to find the # maximum neighbor element within # the distance of less than K # Function to print the matrix def printMatrix(A): # Loop to iterate over the matrix for i in range ( len (A)): for j in range ( len (A[ 0 ])): print (A[i][j], end = ' ' ) print () # Function to find the maximum # neighbor within the distance # of less than equal to K def getMaxNeighbour( A, K ): ans = A; # Loop to find the maximum # element within the distance # of less than K for q in range ( 1 , K + 1 ): for i in range ( len (A)): for j in range ( len (A[ 0 ])): maxi = ans[i][j]; if (i > 0 ): maxi = max (maxi, ans[i - 1 ][j]); if (j > 0 ): maxi = max (maxi, ans[i][j - 1 ]); if (i < len (A) - 1 ): maxi = max (maxi, ans[i + 1 ][j]); if (j < len (A[ 0 ]) - 1 ): maxi = max (maxi, ans[i][j + 1 ]); A[i][j] = maxi; ans = A; return ans; # Driver Code if __name__ = = '__main__' : B = [ [ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ] ] printMatrix(getMaxNeighbour(B, 2 )); # This code is contributed by ruttvik_56 |
C#
// C# implementation to find the // maximum neighbor element within // the distance of less than K using System; class GFG{ // Function to print the matrix static void printMatrix( int [,] A) { // Loop to iterate over the matrix for ( int i = 0; i < A.GetLength(0); i++) { for ( int j = 0; j < A.GetLength(1); j++) Console.Write(A[i, j] + " " ); Console.Write( '\n' ); } } // Function to find the maximum // neighbor within the distance // of less than equal to K static int [,] getMaxNeighbour( int [,] A, int K) { int [,] ans = A; // Loop to find the maximum // element within the distance // of less than K for ( int q = 1; q <= K; q++) { for ( int i = 0; i < A.GetLength(0); i++) { for ( int j = 0; j < A.GetLength(1); j++) { int maxi = ans[i, j]; if (i > 0) maxi = Math.Max(maxi, ans[i - 1, j]); if (j > 0) maxi = Math.Max(maxi, ans[i, j - 1]); if (i < A.GetLength(0) - 1) maxi = Math.Max(maxi, ans[i + 1, j]); if (j < A.GetLength(0) - 1) maxi = Math.Max(maxi, ans[i, j + 1]); A[i, j] = maxi; } } ans = A; } return ans; } // Driver Code public static void Main(String[] args) { int [,] B = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; printMatrix(getMaxNeighbour(B, 2)); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript implementation to find the // maximum neighbor element within // the distance of less than K // Function to print the matrix function printMatrix(A) { // Loop to iterate over the matrix for (let i = 0; i < A.length; i++) { for (let j = 0; j < A[0].length; j++) document.write(A[i][j], ' ' ); document.write( '</br>' ); } } // Function to find the maximum // neighbor within the distance // of less than equal to K function getMaxNeighbour(A,K) { let ans = A; // Loop to find the maximum // element within the distance // of less than K for (let q = 1; q <= K; q++) { for (let i = 0; i < A.length; i++) { for (let j = 0; j < A[0].length; j++) { let maxi = ans[i][j]; if (i > 0) maxi = Math.max( maxi, ans[i - 1][j]); if (j > 0) maxi = Math.max( maxi, ans[i][j - 1]); if (i < A.length - 1) maxi = Math.max( maxi, ans[i + 1][j]); if (j < A[0].length - 1) maxi = Math.max( maxi, ans[i][j + 1]); A[i][j] = maxi; } } ans = A; } return ans; } // Driver Code let B = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]; printMatrix(getMaxNeighbour(B, 2)); // This code is contributed by shinjanpatra. <script> |
7 8 9 8 9 9 9 9 9
Time Complexity: O(M*N*K)
Space Complexity: O(M*N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!