Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximum length Subsequence with Product less than given value for each query

Maximum length Subsequence with Product less than given value for each query

Given an array of positive integers arr[] of length N and a query array query[] of length M, the task is to find the maximum length subsequence in the array whose product is not greater than query [i] for all the queries.

Input: arr[] = {4, 5, 2, 1}  queries[] = {3, 10, 21}
Output: {2, 3, 3}
Explanation: 
For queries[0] : {2, 1} is maximum possible length subsequence in which product of all elements is not greater than query[0] i.e 3
For queries[1] : {4, 2, 1} is maximum possible length subsequence in which product of all elements is not greater than query[1] i.e 10
For queries[2] : {4, 2, 1} is maximum possible length subsequence in which product of all elements is not greater than query[2] i.e 21

Input: arr[] = {7, 3, 2, 1, 0}, queries[] = {10, 20, 30}
Output: {5, 5, 5}
Explanation: 
In array 0 is present, so for every query if we include 0 in maximum length subsequence then our product will be 0 which will always did not exceed the query value. For such all subsequence the maximum length will be total number of elements in array

Approach :

The length of the subsequence will be maximum if all the elements in the subsequence have minimum possible values. To achieve this we will sort the given array and for every query we will find the subarray length starting from 0 index whose product should not exceed the query value. 

The corner case will be, if the 0 value is present in array then for every query maximum subsequence length will be total number of elements in array N as their product will be 0.

Illustration :

arr[] = { 4, 5, 2, 1}  queries = { 3, 10, 21 },  

Sort the given array so the new array becomes arr[] = {1, 2, 4, 5}

For query[0]: 
        => The first 2 elements provide product less than 3.
        => The selected subsequence is highlighted {1, 2, 4, 5}
        => Maximum length subsequence will be of size 2.
For query[1]: 
        => The first 3 elements provide product less than 10.
        => The selected subsequence is highlighted {1, 2, 4, 5} 
        => Maximum length subsequence will be of size 3.
For query[2]: 
        => The first 3 elements provide product less than 21.
        => The selected subsequence is highlighted {1, 2, 4, 5} 
        => Maximum length subsequence will be of size 3.

Hence, from queries array output generated will be {2, 3, 3}

Follow the below steps to Implement the above approach:

  • Check the presence of 0 in the array 
    • If present then for each query[i] value greater than 0 return the length of the array.
    • Else sort the array and then consider the maximum number of elements starting from index 0 that gives the product value less than query[i].

Below is the implementation of the above approach

C++




// C++ program to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the length of the subsequence
// with product less than each query
vector<int> maxLengthProductSubsequence(int arr[], int n,
                                        int queries[],
                                        int m)
{
    vector<int> ans(m);
 
    // Sorting the given array
    sort(arr, arr + n);
 
    // Traverse for each query
    for (int i = 0; i < m; i++) {
 
        // To store current product and maximum product
        int curr_prod = 1, max_prod = queries[i];
 
        // If query value is less than all elements value
        // the ans will be 0
        ans[i] = 0;
 
        // Traverse in sorted array
        for (int j = 0; j < n; j++) {
 
            // Corner case
            if (arr[0] == 0) {
                ans[i] = n;
                break;
            }
            curr_prod *= arr[j];
 
            if (curr_prod <= max_prod) {
                ans[i] = j + 1;
            }
            else {
                break;
            }
        }
    }
 
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 4, 5, 2, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    int queries[] = { 3, 10, 21 };
    int M = sizeof(queries) / sizeof(arr[0]);
 
    // Function Call
    vector<int> res
        = maxLengthProductSubsequence(arr, N, queries, M);
    for (int x : res)
        cout << x << " ";
 
    return 0;
}


Java




// Java program to implement the approach
import java.util.*;
 
class GFG{
 
  // Function to find the length of the subsequence
  // with product less than each query
  static int[] maxLengthProductSubsequence(int arr[], int n,
                                           int queries[],
                                           int m)
  {
    int []ans = new int[m];
 
    // Sorting the given array
    Arrays.sort(arr);
 
    // Traverse for each query
    for (int i = 0; i < m; i++) {
 
      // To store current product and maximum product
      int curr_prod = 1, max_prod = queries[i];
 
      // If query value is less than all elements value
      // the ans will be 0
      ans[i] = 0;
 
      // Traverse in sorted array
      for (int j = 0; j < n; j++) {
 
        // Corner case
        if (arr[0] == 0) {
          ans[i] = n;
          break;
        }
        curr_prod *= arr[j];
 
        if (curr_prod <= max_prod) {
          ans[i] = j + 1;
        }
        else {
          break;
        }
      }
    }
 
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int arr[] = { 4, 5, 2, 1 };
    int N = arr.length;
 
    int queries[] = { 3, 10, 21 };
    int M = queries.length;
 
    // Function Call
    int[] res
      = maxLengthProductSubsequence(arr, N, queries, M);
    for (int x : res)
      System.out.print(x+ " ");
 
  }
}
 
// This code is contributed by shikhasingrajput


Python3




# Python code to implement the approach
 
# Function to find the length of the subsequence
# with product less than each query
def maxLengthProductSubsequence(arr, n, queries,m) :
    ans = [0] * m
 
    # Sorting the given array
    arr.sort()
 
    # Traverse for each query
    for i in range(m):
 
        # To store current product and maximum product
        curr_prod = 1
        max_prod = queries[i]
 
        # If query value is less than all elements value
        # the ans will be 0
        ans[i] = 0
 
        # Traverse in sorted array
        for j in range(n):
 
            # Corner case
            if (arr[0] == 0) :
                ans[i] = n
                break
             
            curr_prod *= arr[j]
 
            if (curr_prod <= max_prod) :
                ans[i] = j + 1
             
            else :
                break
             
    return ans
 
# Driver Code
if __name__ == "__main__":
     
    arr = [ 4, 5, 2, 1 ]
    N = len(arr)
 
    queries = [ 3, 10, 21 ]
    M = len(queries)
 
    # Function Call
    res = maxLengthProductSubsequence(arr, N, queries, M)
    for x in res :
        print(x, end= " ")
 
# This code is contributed by code_hunt.


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG{
 
  // Function to find the length of the subsequence
  // with product less than each query
  static int[] maxLengthProductSubsequence(int[] arr, int n,
                                           int[] queries,
                                           int m)
  {
    int []ans = new int[m];
 
    // Sorting the given array
    Array.Sort(arr);
 
    // Traverse for each query
    for (int i = 0; i < m; i++) {
 
      // To store current product and maximum product
      int curr_prod = 1, max_prod = queries[i];
 
      // If query value is less than all elements value
      // the ans will be 0
      ans[i] = 0;
 
      // Traverse in sorted array
      for (int j = 0; j < n; j++) {
 
        // Corner case
        if (arr[0] == 0) {
          ans[i] = n;
          break;
        }
        curr_prod *= arr[j];
 
        if (curr_prod <= max_prod) {
          ans[i] = j + 1;
        }
        else {
          break;
        }
      }
    }
 
    return ans;
  }
 
static public void Main ()
{
    int[] arr = { 4, 5, 2, 1 };
    int N = arr.Length;
 
    int[] queries = { 3, 10, 21 };
    int M = queries.Length;
 
    // Function Call
    int[] res
      = maxLengthProductSubsequence(arr, N, queries, M);
    foreach (int x in res)
      Console.Write(x+ " ");
}
}
 
// This code is contributed by sanjoy_62.


Javascript




// JavaScript program to implement the approach
 
// Function to find the length of the subsequence
// with product less than each query
function maxLengthProductSubsequence(arr, n, queries, m) {
  let ans = new Array(m);
 
  // Sorting the given array
  arr.sort();
 
  // Traverse for each query
  for (let i = 0; i < m; i++) {
    // To store current product and maximum product
    let curr_prod = 1,
      max_prod = queries[i];
 
    // If query value is less than all elements value
    // the ans will be 0
    ans[i] = 0;
 
    // Traverse in sorted array
    for (let j = 0; j < n; j++) {
      // Corner case
      if (arr[0] == 0) {
        ans[i] = n;
        break;
      }
      curr_prod *= arr[j];
 
      if (curr_prod <= max_prod) {
        ans[i] = j + 1;
      } else {
        break;
      }
    }
  }
 
  return ans;
}
 
// Driver Code
 
let arr = [4, 5, 2, 1];
let N = arr.length;
 
let queries = [3, 10, 21];
let M = queries.length;
 
// Function Call
let res = maxLengthProductSubsequence(arr, N, queries, M);
console.log(res);
 
// This code is contributed by ishankhandelwals.


Output

2 3 3 

Time Complexity: O(M * N + N * logN), for each query it taken O(N) time. So total O(N*M) time to answer all M queries
Auxiliary Space: O(M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
30 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments