Tuesday, December 31, 2024
Google search engine
HomeData Modelling & AIMaximum length of subarray such that sum of the subarray is even

Maximum length of subarray such that sum of the subarray is even

Given an array of N elements. The task is to find the length of the longest subarray such that sum of the subarray is even.
Examples: 

Input : N = 6, arr[] = {1, 2, 3, 2, 1, 4}
Output : 5
Explanation: In the example the subarray
in range [2, 6] has sum 12 which is even,
so the length is 5.
Input : N = 4, arr[] = {1, 2, 3, 2}
Output : 4

Naive Approach

The idea is to find all subarrays and then find those subarrays whose sum of elements are even. After that choose the longest length of those subarrays.

Steps to implement-

  • Declare a variable ans with value 0 to store the final answer
  • Run two loops to find all subarrays
  • Find the sum of all elements of the subarray
  • When the sum of all elements of the subarray is even 
    • Then update ans as the maximum of ans and the length of that subarray

Code-

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find length of the longest
// subarray such that sum of the
// subarray is even
int maxLength(int arr[], int N)
{
   //To store answer
   int ans=0;
    
   //Find all subarray
   for(int i=0;i<N;i++){
       //To store length of subarray
       int length=0;
       for(int j=i;j<N;j++){
           //Increment the length
           length++;
            
           //Boolean variable to tell whether sum
           //of all elements are even or not
           bool val=false;
            
           //To store sum of all elements of subarray
           int sum=0;
            
           for(int k=i;k<=j;k++){
               sum+=arr[k];
           }
            
           //When sum of all elements are even
           if(sum%2==0){
               ans=max(ans,length);
           }
       }
   }
   return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 2 };
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << maxLength(arr, N) << "\n";
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
public class Main {
 
    // Function to find length of the longest
    // subarray such that sum of the
    // subarray is even
    static int maxLength(int[] arr, int N) {
        // To store answer
        int ans = 0;
 
        // Find all subarray
        for (int i = 0; i < N; i++) {
            // To store length of subarray
            int length = 0;
            for (int j = i; j < N; j++) {
                // Increment the length
                length++;
 
                // Boolean variable to tell whether sum
                // of all elements are even or not
                boolean val = false;
 
                // To store sum of all elements of subarray
                int sum = 0;
 
                for (int k = i; k <= j; k++) {
                    sum += arr[k];
                }
 
                // When sum of all elements is even
                if (sum % 2 == 0) {
                    ans = Math.max(ans, length);
                }
            }
        }
        return ans;
    }
 
    // Driver Code
    public static void main(String[] args) {
        int[] arr = {1, 2, 3, 2};
        int N = arr.length;
 
        System.out.println(maxLength(arr, N));
    }
}
 
// This code is contributed by Pushpesh Raj


Python3




# Python3 implementation of the above approach
 
# Function to find length of the longest subarray such
# that sum of the subarray is even
def maxLength(arr):
    # To store the answer
    ans = 0
 
    # Find all subarrays
    for i in range(len(arr)):
        # To store the length of subarray
        length = 0
        for j in range(i, len(arr)):
            # Increment the length
            length += 1
 
            # Boolean variable to tell whether the sum
            # of all elements is even or not
            val = False
 
            # To store the sum of all elements of subarray
            subarray_sum = 0
 
            for k in range(i, j + 1):
                subarray_sum += arr[k]
 
            # When the sum of all elements is even
            if subarray_sum % 2 == 0:
                ans = max(ans, length)
 
    return ans
 
# Driver Code
arr = [1, 2, 3, 2]
print(maxLength(arr))


C#




using System;
 
public class GFG
{
    // Function to find length of the longest
    // subarray such that sum of the
    // subarray is even
    public static int MaxLength(int[] arr, int N)
    {
        // To store the answer
        int ans = 0;
 
        // Find all subarrays
        for (int i = 0; i < N; i++)
        {
            // To store the length of subarray
            int length = 0;
            for (int j = i; j < N; j++)
            {
                // Increment the length
                length++;
 
                // To store the sum of all elements of subarray
                int sum = 0;
 
                for (int k = i; k <= j; k++)
                {
                    sum += arr[k];
                }
 
                // When the sum of all elements is even
                if (sum % 2 == 0)
                {
                    ans = Math.Max(ans, length);
                }
            }
        }
        return ans;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int[] arr = { 1, 2, 3, 2 };
        int N = arr.Length;
 
        Console.WriteLine(MaxLength(arr, N));
    }
}


Javascript




function MaxLength(arr, N) {
    // To store the answer
    let ans = 0;
 
    // Find all subarrays
    for (let i = 0; i < N; i++) {
        // To store the length of subarray
        let length = 0;
        for (let j = i; j < N; j++) {
            // Increment the length
            length++;
 
            // To store the sum of all elements of subarray
            let sum = 0;
 
            for (let k = i; k <= j; k++) {
                sum += arr[k];
            }
 
            // When the sum of all elements is even
            if (sum % 2 === 0) {
                ans = Math.max(ans, length);
            }
        }
    }
    return ans;
}
 
// Driver code
const arr = [1, 2, 3, 2];
const N = arr.length;
 
console.log(MaxLength(arr, N));


Output

4









Time Complexity: O(N3), because of two nested loops to find all subarray and third loop is to find the sum of all elements of subarray
Auxiliary Space: O(1), because no extra space has been used

Approach: First check if the total sum of the array is even. If the total sum of the array is even then the answer will be N.
If the total sum of the array is not even, means it is ODD. So, the idea is to find an odd element from the array such that excluding that element and comparing the length of both parts of the array we can obtain the max length of the subarray with even sum.
It is obvious that the subarray with even sum will exist in range [1, x) or (x, N], 
where 1 <= x <= N, and arr[x] is ODD. 
Below is the implementation of above approach: 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find length of the longest
// subarray such that sum of the
// subarray is even
int maxLength(int a[], int n)
{
    int sum = 0, len = 0;
 
    // Check if sum of complete array is even
    for (int i = 0; i < n; i++)
        sum += a[i];
 
    if (sum % 2 == 0) // total sum is already even
        return n;
 
    // Find an index i such the a[i] is odd
    // and compare length of both halves excluding
    // a[i] to find max length subarray
    for (int i = 0; i < n; i++) {
        if (a[i] % 2 == 1)
            len = max(len, max(n - i - 1, i));
    }
 
    return len;
}
 
// Driver Code
int main()
{
    int a[] = { 1, 2, 3, 2 };
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << maxLength(a, n) << "\n";
 
    return 0;
}


Java




// Java implementation of the approach
 
class GFG
{
 
    // Function to find length of the longest
    // subarray such that sum of the
    // subarray is even
    static int maxLength(int a[], int n)
    {
        int sum = 0, len = 0;
 
        // Check if sum of complete array is even
        for (int i = 0; i < n; i++)
        {
            sum += a[i];
        }
 
        if (sum % 2 == 0) // total sum is already even
        {
            return n;
        }
 
        // Find an index i such the a[i] is odd
        // and compare length of both halfs excluding
        // a[i] to find max length subarray
        for (int i = 0; i < n; i++)
        {
            if (a[i] % 2 == 1)
            {
                len = Math.max(len, Math.max(n - i - 1, i));
            }
        }
 
        return len;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int a[] = {1, 2, 3, 2};
        int n = a.length;
        System.out.println(maxLength(a, n));
 
    }
}
 
// This code has been contributed by 29AjayKumar


Python




# Python3 implementation of the above approach
 
# Function to find Length of the longest
# subarray such that Sum of the
# subarray is even
def maxLength(a, n):
 
    Sum = 0
    Len = 0
 
    # Check if Sum of complete array is even
    for i in range(n):
        Sum += a[i]
 
    if (Sum % 2 == 0): # total Sum is already even
        return n
 
    # Find an index i such the a[i] is odd
    # and compare Length of both halfs excluding
    # a[i] to find max Length subarray
    for i in range(n):
        if (a[i] % 2 == 1):
            Len = max(Len, max(n - i - 1, i))
 
    return Len
 
# Driver Code
 
a= [1, 2, 3, 2]
n = len(a)
 
print(maxLength(a, n))
 
# This code is contributed by mohit kumar


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to find length of the longest
    // subarray such that sum of the
    // subarray is even
    static int maxLength(int []a, int n)
    {
        int sum = 0, len = 0;
 
        // Check if sum of complete array is even
        for (int i = 0; i < n; i++)
        {
            sum += a[i];
        }
 
        if (sum % 2 == 0) // total sum is already even
        {
            return n;
        }
 
        // Find an index i such the a[i] is odd
        // and compare length of both halfs excluding
        // a[i] to find max length subarray
        for (int i = 0; i < n; i++)
        {
            if (a[i] % 2 == 1)
            {
                len = Math.Max(len, Math.Max(n - i - 1, i));
            }
        }
 
        return len;
    }
 
    // Driver Code
    static public void Main ()
    {
        int []a = {1, 2, 3, 2};
        int n = a.Length;
        Console.WriteLine(maxLength(a, n));
 
    }
}
 
// This code has been contributed by ajit.


Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to find length of the longest
// subarray such that sum of the
// subarray is even
function maxLength(a, n)
{
    let sum = 0, len = 0;
 
    // Check if sum of complete array is even
    for (let i = 0; i < n; i++)
        sum += a[i];
 
    if (sum % 2 == 0) // total sum is already even
        return n;
 
    // Find an index i such the a[i] is odd
    // and compare length of both halfs excluding
    // a[i] to find max length subarray
    for (let i = 0; i < n; i++) {
        if (a[i] % 2 == 1)
            len = Math.max(len, Math.max(n - i - 1, i));
    }
 
    return len;
}
 
// Driver Code
    let a = [ 1, 2, 3, 2 ];
    let n = a.length;
 
    document.write(maxLength(a, n) + "<br>");
 
     
// This code is contributed by Mayank Tyagi
 
</script>


PHP




<?php
//PHP implementation of the above approach
 
// Function to find length of the longest
// subarray such that sum of the
// subarray is even
function maxLength($a, $n)
{
    $sum = 0;
    $len = 0;
 
    // Check if sum of complete array is even
    for ($i = 0; $i < $n; $i++)
        $sum += $a[$i];
 
    if ($sum % 2 == 0) // total sum is already even
        return $n;
 
    // Find an index i such the a[i] is odd
    // and compare length of both halfs excluding
    // a[i] to find max length subarray
    for ($i = 0; $i < $n; $i++)
    {
        if ($a[$i] % 2 == 1)
            $len = max($len, $max($n - $i - 1, $i));
    }
 
    return $len;
}
 
// Driver Code
$a = array (1, 2, 3, 2 );
$n = count($a);
 
echo maxLength($a, $n) , "\n";
 
 
// This code is contributed by akt_mit.
?>


Output

4









Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments