Saturday, January 18, 2025
Google search engine
HomeData Modelling & AIMaximum length of same indexed subarrays from two given arrays satisfying the...

Maximum length of same indexed subarrays from two given arrays satisfying the given condition

Given two arrays arr[] and brr[] and an integer C, the task is to find the maximum possible length, say K, of the same indexed subarrays such that the sum of the maximum element in the K-length subarray in brr[] with the product between K and sum of the K-length subarray in arr[] does not exceed C.

Examples:

Input: arr[] = {2, 1, 3, 4, 5}, brr[] = {3, 6, 1, 3, 4}, C = 25
Output: 3
Explanation: Considering the subarrays arr[] = {2, 1, 3} (Sum = 6) and brr[] = {3, 6, 1} (Maximum element = 6), Maximum element + sum * K = 6 + 6 * 3 = 24, which is less than C(= 25).

Input: arr[] ={1, 2, 1, 6, 5, 5, 6, 1}, brr[] = {14, 8, 15, 15, 9, 10, 7, 12}, C = 40
Output: 3
Explanation: Considering the subarrays arr[] = {1, 2, 1} (Sum = 4) and brr[] = {14, 8, 15} (Maximum element = 6), Maximum element + sum * K = 15 + 4 * 3 = 27, which is less than C(= 40).

 

Naive Approach: The simplest approach is to generate all possible subarrays of the two given arrays and consider all similarly indexed subarrays from both the arrays and check for the given condition. Print the maximum length of subarrays satisfying the given conditions. 

Time Complexity: O(K*N2)
Auxiliary Space: O(1)

Binary-Search-based Approach: To optimize the above approach, the idea is to use Binary Search to find the possible value of K and to find the sum of each subarray of length K using the Sliding Window Technique. Follow the steps below to solve the problem:

  • Build a Segment Tree to find the maximum value among all possible ranges.
  • Perform Binary Search over the range [0, N] to find the maximum possible size of the subarray. 
    • Initialize low as 0 and high as N.
    • Find the value of mid as (low + high)/2.
    • Check if it is possible to get the maximum size of the subarray as mid or not by checking the given condition. If found to be true, then update the maximum length as mid and low as (mid + 1).
    • Otherwise, update high as (mid – 1).
  • After completing the above steps, print the value of the maximum length stored.

Below is the implementation of the above approach:

C++14




// C++ program for the above approach 
#include <bits/stdc++.h> 
using namespace std; 
  
// Stores the segment tree node values
int seg[10000];
  
// Function to find maximum element
// in the given range
int getMax(int b[], int ss, int se, int qs,
           int qe, int index)
{
      
    // If the query is out of bounds
    if (se < qs || ss > qe)
        return INT_MIN / 2;
  
    // If the segment is completely
    // inside the query range
    if (ss >= qs && se <= qe)
        return seg[index];
  
    // Calculate the mid
    int mid = ss + (se - ss) / 2;
  
    // Return maximum in left & right
    // of the segment tree recursively
    return max(
        getMax(b, ss, mid, qs,
               qe, 2 * index + 1),
        getMax(b, mid + 1, se,
               qs, qe, 2 * index + 2));
}
  
// Function to check if it is possible
// to have such a subarray of length K
bool possible(int a[], int b[], int n,
              int c, int k)
{
    int sum = 0;
      
    // Check for first window of size K
    for(int i = 0; i < k; i++) 
    {
        sum += a[i];
    }
   
    // Calculate the total cost and
    // check if less than equal to c
    int total_cost = sum * k + getMax(
                     b, 0, n - 1, 
                        0, k - 1, 0);
   
    // If it satisfy the condition
    if (total_cost <= c)
        return true;
   
    // Find the sum of current subarray
    // and calculate total cost
    for(int i = k; i < n; i++)
    {
          
        // Include the new element
        // of current subarray
        sum += a[i];
   
        // Discard the element
        // of last subarray
        sum -= a[i - k];
   
        // Calculate total cost
        // and check <=c
        total_cost = sum * k + getMax(
                     b, 0, n - 1,
                       i - k + 1, i, 0);
   
        // If possible, then
        // return true
        if (total_cost <= c)
            return true;
    }
   
    // If it is not possible
    return false;
}
  
// Function to find maximum length
// of subarray such that sum of
// maximum element in subarray in brr[] and
// sum of subarray in arr[] * K is at most C
int maxLength(int a[], int b[], int n, int c)
{
      
    // Base Case
    if (n == 0)
        return 0;
  
    // Let maximum length be 0
    int max_length = 0;
   
    int low = 0, high = n;
   
    // Perform Binary search
    while (low <= high)
    {
          
        // Find mid value
        int mid = low + (high - low) / 2;
          
        // Check if the current mid
        // satisfy the given condition
        if (possible(a, b, n, c, mid) != false)
        {
              
            // If yes, then store length
            max_length = mid;
            low = mid + 1;
        }
   
        // Otherwise
        else
            high = mid - 1;
    }
   
    // Return maximum length stored
    return max_length;
}
   
// Function that builds segment Tree
void build(int b[], int index, int s, int e)
{
      
    // If there is only one element
    if (s == e) 
    {
        seg[index] = b[s];
        return;
    }
   
    // Find the value of mid
    int mid = s + (e - s) / 2;
  
    // Build left and right parts
    // of segment tree recursively
    build(b, 2 * index + 1, s, mid);
    build(b, 2 * index + 2, mid + 1, e);
  
    // Update the value at current
    // index
    seg[index] = max(
        seg[2 * index + 1],
        seg[2 * index + 2]);
}
  
// Function that initializes the
// segment Tree
void initialiseSegmentTree(int N)
{
    int seg[4 * N];
}
    
// Driver Code 
int main() 
    int A[] = { 1, 2, 1, 6, 5, 5, 6, 1 };
    int B[] = { 14, 8, 15, 15, 9, 10, 7, 12 };
       
    int C = 40;
       
    int N = sizeof(A) / sizeof(A[0]);
       
    // Initialize and Build the
    // Segment Tree
    initialiseSegmentTree(N);
    build(B, 0, 0, N - 1);
       
    // Function Call
    cout << (maxLength(A, B, N, C));
  
// This code is contributed by susmitakundugoaldanga


Java




// Java program for the above approach
  
import java.io.*;
import java.util.*;
class GFG {
  
    // Stores the segment tree node values
    static int seg[];
  
    // Function to find maximum length
    // of subarray such that sum of
    // maximum element in subarray in brr[] and
    // sum of subarray in arr[] * K is at most C
    public static int maxLength(
        int a[], int b[], int n, int c)
    {
        // Base Case
        if (n == 0)
            return 0;
  
        // Let maximum length be 0
        int max_length = 0;
  
        int low = 0, high = n;
  
        // Perform Binary search
        while (low <= high) {
  
            // Find mid value
            int mid = low + (high - low) / 2;
  
            // Check if the current mid
            // satisfy the given condition
            if (possible(a, b, n, c, mid)) {
  
                // If yes, then store length
                max_length = mid;
                low = mid + 1;
            }
  
            // Otherwise
            else
                high = mid - 1;
        }
  
        // Return maximum length stored
        return max_length;
    }
  
    // Function to check if it is possible
    // to have such a subarray of length K
    public static boolean possible(
        int a[], int b[], int n,
        int c, int k)
    {
        int sum = 0;
  
        // Check for first window of size K
        for (int i = 0; i < k; i++) {
            sum += a[i];
        }
  
        // Calculate the total cost and
        // check if less than equal to c
        int total_cost
            = sum * k + getMax(b, 0, n - 1,
                               0, k - 1, 0);
  
        // If it satisfy the condition
        if (total_cost <= c)
            return true;
  
        // Find the sum of current subarray
        // and calculate total cost
        for (int i = k; i < n; i++) {
  
            // Include the new element
            // of current subarray
            sum += a[i];
  
            // Discard the element
            // of last subarray
            sum -= a[i - k];
  
            // Calculate total cost
            // and check <=c
            total_cost
                = sum * k
                  + getMax(b, 0, n - 1,
                           i - k + 1, i, 0);
  
            // If possible, then
            // return true
            if (total_cost <= c)
                return true;
        }
  
        // If it is not possible
        return false;
    }
  
    // Function that builds segment Tree
    public static void build(
        int b[], int index, int s, int e)
    {
        // If there is only one element
        if (s == e) {
            seg[index] = b[s];
            return;
        }
  
        // Find the value of mid
        int mid = s + (e - s) / 2;
  
        // Build left and right parts
        // of segment tree recursively
        build(b, 2 * index + 1, s, mid);
        build(b, 2 * index + 2, mid + 1, e);
  
        // Update the value at current
        // index
        seg[index] = Math.max(
            seg[2 * index + 1],
            seg[2 * index + 2]);
    }
  
    // Function to find maximum element
    // in the given range
    public static int getMax(
        int b[], int ss, int se, int qs,
        int qe, int index)
    {
        // If the query is out of bounds
        if (se < qs || ss > qe)
            return Integer.MIN_VALUE / 2;
  
        // If the segment is completely
        // inside the query range
        if (ss >= qs && se <= qe)
            return seg[index];
  
        // Calculate the mid
        int mid = ss + (se - ss) / 2;
  
        // Return maximum in left & right
        // of the segment tree recursively
        return Math.max(
            getMax(b, ss, mid, qs,
                   qe, 2 * index + 1),
            getMax(b, mid + 1, se,
                   qs, qe, 2 * index + 2));
    }
  
    // Function that initializes the
    // segment Tree
    public static void
    initialiseSegmentTree(int N)
    {
        seg = new int[4 * N];
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int A[] = { 1, 2, 1, 6, 5, 5, 6, 1 };
        int B[] = { 14, 8, 15, 15, 9, 10, 7, 12 };
  
        int C = 40;
  
        int N = A.length;
  
        // Initialize and Build the
        // Segment Tree
        initialiseSegmentTree(N);
        build(B, 0, 0, N - 1);
  
        // Function Call
        System.out.println(maxLength(A, B, N, C));
    }
}


Python3




# Python3 program for the above approach 
import math 
  
# Stores the segment tree node values
seg = [0 for x in range(10000)] 
INT_MIN = int(-10000000)
  
# Function to find maximum element
# in the given range
def getMax(b, ss, se, qs, qe, index):
      
    # If the query is out of bounds
    if (se < qs or ss > qe):
        return int(INT_MIN / 2)
          
    # If the segment is completely
    # inside the query range
    if (ss >= qs and se <= qe):
        return seg[index]
          
    # Calculate the mid
    mid = int(int(ss) + int((se - ss) / 2))
      
    # Return maximum in left & right
    # of the segment tree recursively
    return max(getMax(b, ss, mid, qs,
                      qe, 2 * index + 1),
               getMax(b, mid + 1, se, qs,
                      qe, 2 * index + 2))
  
# Function to check if it is possible
# to have such a subarray of length K
def possible(a,  b, n, c, k):
      
    sum = int(0)
      
    # Check for first window of size K
    for i in range(0, k):
        sum += a[i]
          
    # Calculate the total cost and
    # check if less than equal to c
    total_cost = int(sum * k + 
              getMax(b, 0, n - 1,
                        0, k - 1, 0))
   
    # If it satisfy the condition
    if (total_cost <= c):
        return 1
  
    # Find the sum of current subarray
    # and calculate total cost
    for i in range (k, n):
          
        # Include the new element
        # of current subarray
        sum += a[i]
          
        # Discard the element
        # of last subarray
        sum -= a[i - k]
  
        # Calculate total cost
        # and check <=c
        total_cost = int(sum * k + getMax(
               b, 0, n - 1,i - k + 1, i, 0))
   
        # If possible, then
        # return true
        if (total_cost <= c):
            return 1
              
    # If it is not possible
    return 0
  
# Function to find maximum length
# of subarray such that sum of
# maximum element in subarray in brr[] and
# sum of subarray in arr[] * K is at most C
def maxLength(a, b, n, c):
      
    # Base Case
    if (n == 0):
        return 0
  
    # Let maximum length be 0
    max_length = int(0)
   
    low = 0
    high = n
      
    # Perform Binary search
    while (low <= high):
          
        # Find mid value
        mid = int(low + int((high - low) / 2))
          
        # Check if the current mid
        # satisfy the given condition
        if (possible(a, b, n, c, mid) != 0):
              
            # If yes, then store length
            max_length = mid
            low = mid + 1
              
        # Otherwise
        else:
            high = mid - 1
   
    # Return maximum length stored
    return max_length
   
# Function that builds segment Tree
def build(b, index, s, e):
      
    # If there is only one element
    if (s == e):
        seg[index] = b[s]
        return
      
    # Find the value of mid
    mid = int(s + int((e - s) / 2))
  
    # Build left and right parts
    # of segment tree recursively
    build(b, 2 * index + 1, s, mid)
    build(b, 2 * index + 2, mid + 1, e)
  
    # Update the value at current
    # index
    seg[index] = max(seg[2 * index + 1],
                     seg[2 * index + 2])
  
#  Driver Code 
A = [ 1, 2, 1, 6, 5, 5, 6, 1 ]
B = [ 14, 8, 15, 15, 9, 10, 7, 12 ]     
  
C = int(40)
N = len(A)  
  
# Initialize and Build the
# Segment Tree
build(B, 0, 0, N - 1)
  
# Function Call
print((maxLength(A, B, N, C)))
  
# This code is contributed by Stream_Cipher


C#




// C# program for the above approach 
using System;
  
class GFG{
      
// Stores the segment tree node values 
static int[] seg; 
  
// Function to find maximum length 
// of subarray such that sum of 
// maximum element in subarray in brr[] and 
// sum of subarray in arr[] * K is at most C 
static int maxLength(int[] a, int[] b,
                     int n, int c) 
      
    // Base Case 
    if (n == 0) 
        return 0; 
  
    // Let maximum length be 0 
    int max_length = 0; 
  
    int low = 0, high = n; 
  
    // Perform Binary search 
    while (low <= high)
    
          
        // Find mid value 
        int mid = low + (high - low) / 2; 
  
        // Check if the current mid 
        // satisfy the given condition 
        if (possible(a, b, n, c, mid))
        
              
            // If yes, then store length 
            max_length = mid; 
            low = mid + 1; 
        
  
        // Otherwise 
        else
            high = mid - 1; 
    
  
    // Return maximum length stored 
    return max_length; 
  
// Function to check if it is possible 
// to have such a subarray of length K 
static bool possible(int[] a, int[] b, int n,
                     int c, int k) 
    int sum = 0; 
  
    // Check for first window of size K 
    for(int i = 0; i < k; i++)
    {
        sum += a[i]; 
    
  
    // Calculate the total cost and 
    // check if less than equal to c 
    int total_cost = sum * k +
              getMax(b, 0, n - 1, 
                        0, k - 1, 0); 
  
    // If it satisfy the condition 
    if (total_cost <= c) 
        return true
  
    // Find the sum of current subarray 
    // and calculate total cost 
    for(int i = k; i < n; i++)
    
          
        // Include the new element 
        // of current subarray 
        sum += a[i]; 
  
        // Discard the element 
        // of last subarray 
        sum -= a[i - k]; 
  
        // Calculate total cost 
        // and check <=c 
        total_cost = sum * k +
              getMax(b, 0, n - 1, 
                       i - k + 1, i, 0); 
  
        // If possible, then 
        // return true 
        if (total_cost <= c) 
            return true
    
  
    // If it is not possible 
    return false
  
// Function that builds segment Tree 
static void build(int[] b, int index,
                  int s, int e) 
      
    // If there is only one element 
    if (s == e) 
    
        seg[index] = b[s]; 
        return
    
  
    // Find the value of mid 
    int mid = s + (e - s) / 2; 
  
    // Build left and right parts 
    // of segment tree recursively 
    build(b, 2 * index + 1, s, mid); 
    build(b, 2 * index + 2, mid + 1, e); 
  
    // Update the value at current 
    // index 
    seg[index] = Math.Max( 
        seg[2 * index + 1], 
        seg[2 * index + 2]); 
  
// Function to find maximum element 
// in the given range 
public static int getMax(int[] b, int ss, 
                         int se, int qs, 
                         int qe, int index) 
      
    // If the query is out of bounds 
    if (se < qs || ss > qe) 
        return Int32.MinValue / 2; 
  
    // If the segment is completely 
    // inside the query range 
    if (ss >= qs && se <= qe) 
        return seg[index]; 
  
    // Calculate the mid 
    int mid = ss + (se - ss) / 2; 
  
    // Return maximum in left & right 
    // of the segment tree recursively 
    return Math.Max( 
        getMax(b, ss, mid, qs, 
               qe, 2 * index + 1), 
        getMax(b, mid + 1, se, 
               qs, qe, 2 * index + 2)); 
  
// Function that initializes the 
// segment Tree 
static void initialiseSegmentTree(int N) 
    seg = new int[4 * N]; 
  
// Driver Code    
static void Main()
{
    int[] A = { 1, 2, 1, 6, 5, 5, 6, 1 }; 
    int[] B = { 14, 8, 15, 15, 9, 10, 7, 12 }; 
  
    int C = 40; 
  
    int N = A.Length; 
  
    // Initialize and Build the 
    // Segment Tree 
    initialiseSegmentTree(N); 
    build(B, 0, 0, N - 1); 
  
    // Function Call 
    Console.WriteLine(maxLength(A, B, N, C)); 
}
}
  
// This code is contributed by divyesh072019


Javascript




<script>
// javascript program for the above approach
    // Stores the segment tree node values
    var seg;
  
    // Function to find maximum length
    // of subarray such that sum of
    // maximum element in subarray in brr and
    // sum of subarray in arr * K is at most C
    function maxLength(a , b , n , c) {
        // Base Case
        if (n == 0)
            return 0;
  
        // Let maximum length be 0
        var max_length = 0;
  
        var low = 0, high = n;
  
        // Perform Binary search
        while (low <= high) {
  
            // Find mid value
            var mid = low + parseInt((high - low) / 2);
  
            // Check if the current mid
            // satisfy the given condition
            if (possible(a, b, n, c, mid)) {
  
                // If yes, then store length
                max_length = mid;
                low = mid + 1;
            }
  
            // Otherwise
            else
                high = mid - 1;
        }
  
        // Return maximum length stored
        return max_length;
    }
  
    // Function to check if it is possible
    // to have such a subarray of length K
    function possible(a , b , n , c , k) {
        var sum = 0;
  
        // Check for first window of size K
        for (i = 0; i < k; i++) {
            sum += a[i];
        }
  
        // Calculate the total cost and
        // check if less than equal to c
        var total_cost = sum * k + getMax(b, 0, n - 1, 0, k - 1, 0);
  
        // If it satisfy the condition
        if (total_cost <= c)
            return true;
  
        // Find the sum of current subarray
        // and calculate total cost
        for (i = k; i < n; i++) {
  
            // Include the new element
            // of current subarray
            sum += a[i];
  
            // Discard the element
            // of last subarray
            sum -= a[i - k];
  
            // Calculate total cost
            // and check <=c
            total_cost = sum * k + getMax(b, 0, n - 1, i - k + 1, i, 0);
  
            // If possible, then
            // return true
            if (total_cost <= c)
                return true;
        }
  
        // If it is not possible
        return false;
    }
  
    // Function that builds segment Tree
    function build(b , index , s , e) {
        // If there is only one element
        if (s == e) {
            seg[index] = b[s];
            return;
        }
  
        // Find the value of mid
        var mid = s + parseInt((e - s) / 2);
  
        // Build left and right parts
        // of segment tree recursively
        build(b, 2 * index + 1, s, mid);
        build(b, 2 * index + 2, mid + 1, e);
  
        // Update the value at current
        // index
        seg[index] = Math.max(seg[2 * index + 1], seg[2 * index + 2]);
    }
  
    // Function to find maximum element
    // in the given range
    function getMax(b , ss , se , qs , qe , index) {
        // If the query is out of bounds
        if (se < qs || ss > qe)
            return parseInt(Number.MIN_VALUE / 2);
  
        // If the segment is completely
        // inside the query range
        if (ss >= qs && se <= qe)
            return seg[index];
  
        // Calculate the mid
        var mid = ss + (se - ss) / 2;
  
        // Return maximum in left & right
        // of the segment tree recursively
        return Math.max(getMax(b, ss, mid, qs, qe, 2 * index + 1), getMax(b, mid + 1, se, qs, qe, 2 * index + 2));
    }
  
    // Function that initializes the
    // segment Tree
    function initialiseSegmentTree(N) {
        seg = Array(4 * N).fill(0);
    }
  
    // Driver Code
      
        var A = [ 1, 2, 1, 6, 5, 5, 6, 1 ];
        var B = [ 14, 8, 15, 15, 9, 10, 7, 12 ];
  
        var C = 40;
  
        var N = A.length;
  
        // Initialize and Build the
        // Segment Tree
        initialiseSegmentTree(N);
        build(B, 0, 0, N - 1);
  
        // Function Call
        document.write(maxLength(A, B, N, C));
  
// This code contributed by aashish1995
</script>


Output: 

3

 

Time Complexity: O(N*(log N)2)
Auxiliary Space: O(N)

Efficient Approach: To optimize the above approach, the idea is to use a Deque by using a monotone queue such that for each subarray of fixed length we can find a maximum in O(1) time. For any subarray in the range [i, i + K – 1] the value expression to be calculated is given by:

max(B[i, i + K - 1]) + (\sum_{j = i}^{j = i + K - 1}arr[j])*K

Below are the steps:

  • Perform the Binary Search over the range [0, N] to find the maximum possible size of the subarray.
    • Initialize low as 0 and high as N.
    • Find the value of mid as (low + high)/2.
    • Check if it is possible to get the maximum size of the subarray as mid or not as:
      • Use deque to find the maximum element in each subarray of size K in the array brr[].
      • Find the value of the expression and if it at most C then break out of this condition.
      • Else check for all possible subarray size mid and if the value of the expression and if it at most C then break out of this condition.
      • Return false if none of the above conditions satisfies.
    • If the current mid satisfies the given conditions then update maximum length as mid and low as (mid + 1).
    • Else Update high as (mid – 1).
  • After the above steps, print the value of the maximum length stored.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to check if it is possible
// to have such a subarray of length K
bool possible(int a[], int b[], int n, int c,
                        int k)
{
  
    // Finds the maximum element
    // in each window of size k
    deque <int> dq;
  
    // Check for window of size K
    int sum = 0;
  
    // For all possible subarrays of
    // length k
    for (int i = 0; i < k; i++) 
    {
        sum += a[i];
  
        // Until deque is empty
        while (dq.size() > 0 && b[i] > b[dq.back()])
            dq.pop_back();
        dq.push_back(i);
    }
  
    // Calculate the total cost and
    // check if less than equal to c
    int total_cost = sum * k + b[dq.front()];
    if (total_cost <= c)
        return true;
  
    // Find sum of current subarray
    // and the total cost
    for (int i = k; i < n; i++)
    {
  
        // Include the new element
        // of current subarray
        sum += a[i];
  
        // Discard the element
        // of last subarray
        sum -= a[i - k];
  
        // Remove all the elements
        // in the old window
        while (dq.size() > 0 && dq.front() <= i - k)
            dq.pop_front();
        while (dq.size() > 0 && b[i] > b[dq.back()])
            dq.pop_back();      
        dq.push_back(i);
  
        // Calculate total cost
        // and check <=c
        total_cost = sum * k + b[dq.front()];
  
        // If current subarray
        // length satisfies
        if (total_cost <= c)
            return true;
    }
  
    // If it is not possible
    return false;
}
  
// Function to find maximum length
// of subarray such that sum of
// maximum element in subarray in brr[] and
// sum of subarray in arr[] * K is at most C
int maxLength(int a[], int b[], int n, int c)
{
    
    // Base Case
    if (n == 0)
        return 0;
  
    // Let maximum length be 0
    int max_length = 0;
    int low = 0, high = n;
  
    // Perform Binary search
    while (low <= high)
    {
  
        // Find mid value
        int mid = low + (high - low) / 2;
  
        // Check if the current mid
        // satisfy the given condition
        if (possible(a, b, n, c, mid)) 
        {
  
            // If yes, then store length
            max_length = mid;
            low = mid + 1;
        }
  
        // Otherwise
        else
            high = mid - 1;
    }
  
    // Return maximum length stored
    return max_length;
}
  
// Driver Code
int main()
{
  
    int A[] = { 1, 2, 1, 6, 5, 5, 6, 1 };
    int B[] = { 14, 8, 15, 15, 9, 10, 7, 12 };
    int N = sizeof(A)/sizeof(A[0]);
    int C = 40;
    cout << maxLength(A, B, N, C);
    return 0;
}
  
// This code is contributed by Dharanendra L V


Java




// Java program for the above approach
  
import java.io.*;
import java.util.*;
class GFG {
  
    // Function to find maximum length
    // of subarray such that sum of
    // maximum element in subarray in brr[] and
    // sum of subarray in arr[] * K is at most C
    public static int maxLength(
        int a[], int b[], int n, int c)
    {
        // Base Case
        if (n == 0)
            return 0;
  
        // Let maximum length be 0
        int max_length = 0;
  
        int low = 0, high = n;
  
        // Perform Binary search
        while (low <= high) {
  
            // Find mid value
            int mid = low + (high - low) / 2;
  
            // Check if the current mid
            // satisfy the given condition
            if (possible(a, b, n, c, mid)) {
  
                // If yes, then store length
                max_length = mid;
                low = mid + 1;
            }
  
            // Otherwise
            else
                high = mid - 1;
        }
  
        // Return maximum length stored
        return max_length;
    }
  
    // Function to check if it is possible
    // to have such a subarray of length K
    public static boolean possible(
        int a[], int b[], int n, int c, int k)
    {
  
        // Finds the maximum element
        // in each window of size k
        Deque<Integer> dq
            = new LinkedList<Integer>();
  
        // Check for window of size K
        int sum = 0;
  
        // For all possible subarrays of
        // length k
        for (int i = 0; i < k; i++) {
  
            sum += a[i];
  
            // Until deque is empty
            while (dq.size() > 0
                   && b[i] > b[dq.peekLast()])
                dq.pollLast();
            dq.addLast(i);
        }
  
        // Calculate the total cost and
        // check if less than equal to c
        int total_cost = sum * k
                         + b[dq.peekFirst()];
        if (total_cost <= c)
            return true;
  
        // Find sum of current subarray
        // and the total cost
        for (int i = k; i < n; i++) {
  
            // Include the new element
            // of current subarray
            sum += a[i];
  
            // Discard the element
            // of last subarray
            sum -= a[i - k];
  
            // Remove all the elements
            // in the old window
            while (dq.size() > 0
                   && dq.peekFirst()
                          <= i - k)
                dq.pollFirst();
  
            while (dq.size() > 0
                   && b[i]
                          > b[dq.peekLast()])
                dq.pollLast();
  
            dq.add(i);
  
            // Calculate total cost
            // and check <=c
            total_cost = sum * k
                         + b[dq.peekFirst()];
  
            // If current subarray
            // length satisfies
            if (total_cost <= c)
                return true;
        }
  
        // If it is not possible
        return false;
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        int A[] = { 1, 2, 1, 6, 5, 5, 6, 1 };
        int B[] = { 14, 8, 15, 15, 9, 10, 7, 12 };
  
        int N = A.length;
  
        int C = 40;
  
        System.out.println(
            maxLength(A, B, N, C));
    }
}


Python3




# Python3 program for the above approach
  
# Function to find maximum length
# of subarray such that sum of
# maximum element in subarray in brr[] and
# sum of subarray in []arr * K is at most C
def maxLength(a, b, n, c):
  
    # Base Case
    if(n == 0):
        return 0
  
    # Let maximum length be 0
    max_length = 0
    low = 0
    high = n
  
    # Perform Binary search
    while(low <= high):
  
        # Find mid value
        mid = int(low + (high - low) / 2)
  
        # Check if the current mid
        # satisfy the given condition
        if(possible(a, b, n, c, mid)):
  
            # If yes, then store length
            max_length = mid
            low = mid + 1
  
        # Otherwise
        else:
            high = mid - 1
  
    # Return maximum length stored
    return max_length
  
# Function to check if it is possible
# to have such a subarray of length K
def possible(a, b, n, c, k):
  
    # Finds the maximum element
    # in each window of size k
    dq = []
      
    # Check for window of size K
    Sum = 0
  
    # For all possible subarrays of
    # length k
    for i in range(k):
        Sum += a[i]
  
        # Until deque is empty
        while(len(dq) > 0 and b[i] > b[dq[len(dq) - 1]]):
            dq.pop(len(dq) - 1)
        dq.append(i)
  
    # Calculate the total cost and
    # check if less than equal to c
    total_cost = Sum * k + b[dq[0]]
    if(total_cost <= c):
        return True
  
    # Find sum of current subarray
    # and the total cost
    for i in range(k, n):
  
        # Include the new element
        # of current subarray
        Sum += a[i]
  
        # Discard the element
        # of last subarray
        Sum -= a[i - k]
  
        # Remove all the elements
        # in the old window
        while(len(dq) > 0 and dq[0] <= i - k):
            dq.pop(0)
        while(len(dq) > 0 and b[i] > b[dq[len(dq) - 1]]):
            dq.pop(len(dq) - 1)
        dq.append(i)
  
        # Calculate total cost
        # and check <=c
        total_cost = Sum * k + b[dq[0]]
  
        # If current subarray
        # length satisfies
        if(total_cost <= c):
            return True
      
    # If it is not possible
    return False
  
# Driver Code
A = [1, 2, 1, 6, 5, 5, 6, 1]
B = [14, 8, 15, 15, 9, 10, 7, 12]
N = len(A)
C = 40
print(maxLength(A, B, N, C))
  
# This code is contributed by avanitrachhadiya2155


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
  
public class GFG {
  
    // Function to find maximum length
    // of subarray such that sum of
    // maximum element in subarray in brr[] and
    // sum of subarray in []arr * K is at most C
    public static int maxLength(
        int []a, int []b, int n, int c)
    {
        // Base Case
        if (n == 0)
            return 0;
  
        // Let maximum length be 0
        int max_length = 0;
  
        int low = 0, high = n;
  
        // Perform Binary search
        while (low <= high) {
  
            // Find mid value
            int mid = low + (high - low) / 2;
  
            // Check if the current mid
            // satisfy the given condition
            if (possible(a, b, n, c, mid)) {
  
                // If yes, then store length
                max_length = mid;
                low = mid + 1;
            }
  
            // Otherwise
            else
                high = mid - 1;
        }
  
        // Return maximum length stored
        return max_length;
    }
  
    // Function to check if it is possible
    // to have such a subarray of length K
    public static bool possible(
        int []a, int []b, int n, int c, int k)
    {
  
        // Finds the maximum element
        // in each window of size k
        List<int> dq
            = new List<int>();
  
        // Check for window of size K
        int sum = 0;
  
        // For all possible subarrays of
        // length k
        for (int i = 0; i < k; i++) {
  
            sum += a[i];
  
            // Until deque is empty
            while (dq.Count > 0
                   && b[i] > b[dq[dq.Count - 1]])
                dq.RemoveAt(dq.Count - 1);
            dq.Add(i);
        }
  
        // Calculate the total cost and
        // check if less than equal to c
        int total_cost = sum * k
                         + b[dq[0]];
        if (total_cost <= c)
            return true;
  
        // Find sum of current subarray
        // and the total cost
        for (int i = k; i < n; i++) {
  
            // Include the new element
            // of current subarray
            sum += a[i];
  
            // Discard the element
            // of last subarray
            sum -= a[i - k];
  
            // Remove all the elements
            // in the old window
            while (dq.Count > 0
                   && dq[0]
                          <= i - k)
                dq.RemoveAt(0);
  
            while (dq.Count > 0
                   && b[i]
                          > b[dq[dq.Count - 1]])
                dq.RemoveAt(dq.Count - 1);
  
            dq.Add(i);
  
            // Calculate total cost
            // and check <=c
            total_cost = sum * k
                         + b[dq[0]];
  
            // If current subarray
            // length satisfies
            if (total_cost <= c)
                return true;
        }
  
        // If it is not possible
        return false;
    }
  
    // Driver Code
    public static void Main(String[] args)
    {
        int []A = { 1, 2, 1, 6, 5, 5, 6, 1 };
        int []B = { 14, 8, 15, 15, 9, 10, 7, 12 };
  
        int N = A.Length;
  
        int C = 40;
  
        Console.WriteLine(
            maxLength(A, B, N, C));
    }
}
  
// This code is contributed by Amit Katiyar


Javascript




<script>
    // Javascript program for the above approach
      
    // Function to check if it is possible
    // to have such a subarray of length K
    function possible(a, b, n, c, k)
    {
  
        // Finds the maximum element
        // in each window of size k
        let dq = [];
  
        // Check for window of size K
        let sum = 0;
  
        // For all possible subarrays of
        // length k
        for (let i = 0; i < k; i++)
        {
            sum += a[i];
  
            // Until deque is empty
            while (dq.length > 0 && b[i] > b[dq[dq.length - 1]])
                dq.pop();
            dq.push(i);
        }
  
        // Calculate the total cost and
        // check if less than equal to c
        let total_cost = sum * k + b[dq[0]];
        if (total_cost <= c)
            return true;
  
        // Find sum of current subarray
        // and the total cost
        for (let i = k; i < n; i++)
        {
  
            // Include the new element
            // of current subarray
            sum += a[i];
  
            // Discard the element
            // of last subarray
            sum -= a[i - k];
  
            // Remove all the elements
            // in the old window
            while (dq.length > 0 && dq[0] <= i - k)
                dq.pop();
            while (dq.length > 0 && b[i] > b[dq[dq.length - 1]])
                dq.pop();     
            dq.push(i);
  
            // Calculate total cost
            // and check <=c
            total_cost = sum * k + b[dq[0]];
  
            // If current subarray
            // length satisfies
            if (total_cost <= c)
                return true;
        }
  
        // If it is not possible
        return false;
    }
  
    // Function to find maximum length
    // of subarray such that sum of
    // maximum element in subarray in brr[] and
    // sum of subarray in arr[] * K is at most C
    function maxLength(a, b, n, c)
    {
  
        // Base Case
        if (n == 0)
            return 0;
  
        // Let maximum length be 0
        let max_length = 0;
        let low = 0, high = n;
  
        // Perform Binary search
        while (low <= high)
        {
  
            // Find mid value
            let mid = low + parseInt((high - low) / 2, 10);
  
            // Check if the current mid
            // satisfy the given condition
            if (possible(a, b, n, c, mid))
            {
  
                // If yes, then store length
                max_length = mid;
                low = mid + 1;
            }
  
            // Otherwise
            else
                high = mid - 1;
        }
  
        // Return maximum length stored
        return max_length;
    }
      
    let A = [ 1, 2, 1, 6, 5, 5, 6, 1 ];
    let B = [ 14, 8, 15, 15, 9, 10, 7, 12 ];
    let N = A.length;
    let C = 40;
    document.write(maxLength(A, B, N, C));
  
</script>


Output: 

3

 

Time Complexity: O(N*log N)
Auxiliary Space: O(N)

Related Topic: Subarrays, Subsequences, and Subsets in Array

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments