Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIMaximum GCD of N integers with given product

Maximum GCD of N integers with given product

Given N integers with unknown values (ai > 0) having product P. The task is to find the maximum possible greatest common divisor of these N integers.

Examples: 

Input : N = 3, P = 24
Output : 2
The integers will have maximum GCD of 2 when a1 = 2, a2 = 2, a3 = 6.

Input : N = 2, P = 1
Output : 1
Only possibility is a1 = 1 and a2 = 1.

Approach: 

  • First find all the prime factors of product P and store it in a Hashmap.
  • The N integers will have maximum GCD when a prime factor will be common in all the integers.
  • So if P = p1k1 * p2k2 * p3k3 …. where p1, p2 … are prime numbers then, maximum GCD which can be obtained will be ans = p1k1 / N * p2k2 / N * p3k3 / N …. 

Below is the implementation of the above approach: 

C++




// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum GCD
// of N integers with product P
int maxGCD(int N, int P)
{
 
    int ans = 1;
 
    // map to store prime factors of P
    unordered_map<int, int> prime_factors;
 
    // prime factorization of P
    for (int i = 2; i * i <= P; i++) {
 
        while (P % i == 0) {
 
            prime_factors[i]++;
 
            P /= i;
        }
    }
 
    if (P != 1)
        prime_factors[P]++;
 
    // traverse all prime factors and
    // multiply its 1/N power to the result
    for (auto v : prime_factors)
        ans *= pow(v.first, v.second / N);   
 
    return ans;
}
 
// Driver code
int main()
{
    int N = 3, P = 24;
 
    cout << maxGCD(N, P);
 
    return 0;
}


Java




// Java implementation of above approach
import java.util.*;
class Solution
{
// Function to find maximum GCD
// of N integers with product P
static int maxGCD(int N, int P)
{
 
    int ans = 1;
 
    // map to store prime factors of P
    Map<Integer, Integer> prime_factors = 
                        new HashMap< Integer,Integer>();
 
    // prime factorization of P
    for (int i = 2; i * i <= P; i++) {
 
        while (P % i == 0) {
 
            if(prime_factors.get(i)==null)
            prime_factors.put(i,1);
            else
            prime_factors.put(i,(prime_factors.get(i)+1));
             
 
            P /= i;
        }
    }
 
    if (P != 1)
            if(prime_factors.get(P)==null)
            prime_factors.put(P,1);
            else
            prime_factors.put(P,(prime_factors.get(P)+1));
 
    // traverse all prime factors and
    // multiply its 1/N power to the result
        Set< Map.Entry< Integer,Integer> > st = prime_factors.entrySet();   
   
       for (Map.Entry< Integer,Integer> me:st)
       {
            
        ans *= Math.pow(me.getKey(),me.getValue() / N);   
        }
 
    return ans;
}
 
// Driver code
public static void main(String args[])
{
    int N = 3, P = 24;
 
    System.out.println( maxGCD(N, P));
 
}
}
//contributed by Arnab Kundu


Python3




# Python3 implementation of
# above approach
from math import sqrt
 
# Function to find maximum GCD
# of N integers with product P
def maxGCD(N, P):
 
    ans = 1
 
    # map to store prime factors of P
    prime_factors = {}
     
    # prime factorization of P
    for i in range(2, int(sqrt(P) + 1)) :
 
        while (P % i == 0) :
             
            if i not in prime_factors :
                prime_factors[i] = 0
         
            prime_factors[i] += 1
            P //= i
         
    if (P != 1) :
        prime_factors[P] += 1
 
    # traverse all prime factors and
    # multiply its 1/N power to the result
    for key, value in prime_factors.items() :
        ans *= pow(key, value // N)
 
    return ans
 
# Driver code
if __name__ == "__main__" :
 
    N, P = 3, 24
 
    print(maxGCD(N, P))
 
# This code is contributed by Ryuga


C#




// C# implementation of above approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
// Function to find maximum GCD
// of N integers with product P
static int maxGCD(int N, int P)
{
 
    int ans = 1;
 
    // map to store prime factors of P
    Dictionary<int, int> prime_factors =
                        new Dictionary< int,int>();
 
    // prime factorization of P
    for (int i = 2; i * i <= P; i++)
    {
 
        while (P % i == 0)
        {
 
            if(!prime_factors.ContainsKey(i))
                prime_factors.Add(i, 1);
            else
            prime_factors[i] = prime_factors[i] + 1;
             
            P /= i;
        }
    }
 
    if (P != 1)
            if(!prime_factors.ContainsKey(P))
                prime_factors.Add(P, 1);
            else
            prime_factors[P] = prime_factors[P] + 1;
 
    // traverse all prime factors and
    // multiply its 1/N power to the result
    foreach(KeyValuePair<int, int> me in prime_factors)
    {
             
        ans *= (int)Math.Pow(me.Key,me.Value / N);
    }
 
    return ans;
}
 
// Driver code
public static void Main(String []args)
{
    int N = 3, P = 24;
 
    Console.WriteLine( maxGCD(N, P));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// Javascript implementation of above approach
 
 
// Function to find maximum GCD
// of N integers with product P
function maxGCD(N, P) {
 
    let ans = 1;
 
    // map to store prime factors of P
    let prime_factors = new Map();
 
    // prime factorization of P
    for (let i = 2; i * i <= P; i++) {
 
        while (P % i == 0) {
 
            if (prime_factors.get(i) == null)
                prime_factors.set(i, 1);
            else
                prime_factors.set(i, (prime_factors.get(i) + 1));
            P = Math.floor(P / i);
        }
    }
 
    if (P != 1)
        prime_factors[P]++;
 
    // traverse all prime factors and
    // multiply its 1/N power to the result
    console.log(prime_factors)
    for (let v of prime_factors) {
        console.log(v)
        ans *= Math.pow(v[0], Math.floor(v[1] / N));
    }
 
    return ans;
}
 
// Driver code
 
let N = 3, P = 24;
 
document.write(maxGCD(N, P));
 
// This code is contributed by gfgking
</script>


Output

2
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments