Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximum even numbers present in any subarray of size K

Maximum even numbers present in any subarray of size K

Given an array arr[] of size N and an integer K, the task is to find the maximum number of even numbers present in any subarray of size K.

Examples:

Input: arr[] = {2, 3, 5, 4, 7, 6}, K = 3 
Output:
Explanation: 
Subarrays of size K(=3) with maximum count of even numbers are { arr[3], arr[4], arr[5] } 
Therefore, the required output is 2

Input: arr[] = {4, 3, 2, 6}, K = 2 
Output: 2

Naive Approach: The simplest approach to solve this problem is to generate all possible subarrays of size K and count the even numbers in the subarray. Finally, print the maximum count obtained.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum count of
// even numbers from all the subarrays of
// size K
int maxEvenIntegers(int arr[], int N, int M)
{
 
    // Stores the maximum count of even numbers
    // from all the subarrays of size K
    int ans = 0;
 
    // Generate all subarrays of size K
    for (int i = 0; i <= N - M; i++) {
 
        // Store count of even numbers
        // in current subarray of size K
        int cnt = 0;
 
        // Traverse the current subarray
        for (int j = 0; j < M; j++) {
 
            // If current element
            // is an even number
            if (arr[i + j] % 2 == 0)
                cnt++;
        }
 
        // Update the answer
        ans = max(ans, cnt);
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 2, 3, 5, 4, 7, 6 };
    int K = 3;
 
    // Size of the input array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << maxEvenIntegers(arr, N, K) << endl;
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
class GFG
{
 
// Function to find the maximum count of
// even numbers from all the subarrays of
// size K
static int maxEvenIntegers(int arr[], int N, int M)
{
 
    // Stores the maximum count of even numbers
    // from all the subarrays of size K
    int ans = 0;
 
    // Generate all subarrays of size K
    for (int i = 0; i <= N - M; i++)
    {
 
        // Store count of even numbers
        // in current subarray of size K
        int cnt = 0;
 
        // Traverse the current subarray
        for (int j = 0; j < M; j++)
        {
 
            // If current element
            // is an even number
            if (arr[i + j] % 2 == 0)
                cnt++;
        }
 
        // Update the answer
        ans = Math.max(ans, cnt);
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 2, 3, 5, 4, 7, 6 };
    int K = 3;
 
    // Size of the input array
    int N = arr.length;
    System.out.print(maxEvenIntegers(arr, N, K) +"\n");
 
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to implement
# the above approach
 
# Function to find the maximum count of
# even numbers from all the subarrays of
# size K
def maxEvenIntegers(arr, N, K):
   
    # Stores the maximum count of even numbers
    # from all the subarrays of size K
    ans = 0
    # Generate all subarrays of size K
    for i in range(N-K+1):
        # Store count of even numbers
        # in current subarray of size K
        cnt = 0
 
        # Traverse the current subarray
        for j in range(0, K):
            if arr[i+j] % 2 == 0:
                cnt += 1
        # Update the answer
        ans = max(cnt, ans)
    # Return answer
    return ans
 
 
# Driver Code
if __name__ == '__main__':
    arr = [2, 3, 5, 4, 7, 6]
    K = 3
    # Size of the input array
    N = len(arr)
    print(maxEvenIntegers(arr, N, K))
 
# This code is contributed by MuskanKalra1


C#




// C# program to implement
// the above approach
using System;
 
class GFG
{
   
    // Function to find the maximum count of
    // even numbers from all the subarrays of
    // size K
    static int maxEvenIntegers(int []arr, int N, int M)
    {
     
        // Stores the maximum count of even numbers
        // from all the subarrays of size K
        int ans = 0;
     
        // Generate all subarrays of size K
        for (int i = 0; i <= N - M; i++)
        {
     
            // Store count of even numbers
            // in current subarray of size K
            int cnt = 0;
     
            // Traverse the current subarray
            for (int j = 0; j < M; j++)
            {
     
                // If current element
                // is an even number
                if (arr[i + j] % 2 == 0)
                    cnt++;
            }
     
            // Update the answer
            ans = Math.Max(ans, cnt);
        }
     
        // Return answer
        return ans;
    }
     
    // Driver Code
    public static void Main(string[] args)
    {
        int []arr = { 2, 3, 5, 4, 7, 6 };
        int K = 3;
     
        // Size of the input array
        int N = arr.Length;
        Console.WriteLine(maxEvenIntegers(arr, N, K));
    }
}
 
// This code is contributed by AnkThon


Javascript




<script>
// Java script program to implement
// the above approach
 
 
// Function to find the maximum count of
// even numbers from all the subarrays of
// size K
function maxEvenIntegers(arr,  N,  M)
{
 
    // Stores the maximum count of even numbers
    // from all the subarrays of size K
    let ans = 0;
 
    // Generate all subarrays of size K
    for (let i = 0; i <= N - M; i++)
    {
 
        // Store count of even numbers
        // in current subarray of size K
        let cnt = 0;
 
        // Traverse the current subarray
        for (let j = 0; j < M; j++)
        {
 
            // If current element
            // is an even number
            if (arr[i + j] % 2 == 0)
                cnt++;
        }
 
        // Update the answer
        ans = Math.max(ans, cnt);
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
 
    let arr = [ 2, 3, 5, 4, 7, 6 ];
    let K = 3;
 
    // Size of the input array
    let N = arr.length;
    document.write(maxEvenIntegers(arr, N, K) +"<br>");
     
//contributed by bobby
 
</script>


Output: 

2

 

Time Complexity: O(N * K) 
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized using the Sliding window technique. Follow the steps below to solve the problems:

  • Initialize a variable, say cntMaxEven, to store the maximum count of even numbers in a subarray of size K.
  • Calculate the count of even numbers in the subarray { arr[0], … arr[K – 1] } and store it into cntMaxEven.
  • Traverse the remaining subarrays of size K by iterating over the range [K, N – 1]. For every ith iteration remove the first element of the subarray and insert the current ith element of the array into the current subarray.
  • Count the even numbers in the current subarray and update cntMaxEven to the maximum count of even numbers in the current subarray and cntMaxEven.
  • Finally, print the value of cntMaxEven.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum count of
// even numbers from all the subarrays of
// size K
int maxEvenIntegers(int arr[], int N, int M)
{
 
    // Stores the count of even numbers
    // in a subarray of size K
    int curr = 0;
 
    // Calculate the count of even numbers
    // in the current subarray
    for (int i = 0; i < M; i++) {
 
        // If current element is
        // an even number
        if (arr[i] % 2 == 0)
            curr++;
    }
 
    // Stores the maximum count of even numbers
    // from all the subarrays of size K
    int ans = curr;
 
    // Traverse remaining subarrays of size K
    // using sliding window technique
    for (int i = M; i < N; i++) {
 
        // If the first element of
        // the subarray is even
        if (arr[i - M] % 2 == 0) {
 
            // Update curr
            curr--;
        }
 
        // If i-th element is even increment
        // the count
        if (arr[i] % 2 == 0)
            curr++;
 
        // Update the answer
        ans = max(ans, curr);
    }
 
    // Return answer
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 3, 5, 4, 7, 6 };
    int M = 3;
 
    // Size of the input array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    cout << maxEvenIntegers(arr, N, M) << endl;
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG
{
 
  // Function to find the maximum count of
  // even numbers from all the subarrays of
  // size K
  static int maxEvenIntegers(int arr[], int N, int M)
  {
 
    // Stores the count of even numbers
    // in a subarray of size K
    int curr = 0;
 
    // Calculate the count of even numbers
    // in the current subarray
    for (int i = 0; i < M; i++)
    {
 
      // If current element is
      // an even number
      if (arr[i] % 2 == 0)
        curr++;
    }
 
    // Stores the maximum count of even numbers
    // from all the subarrays of size K
    int ans = curr;
 
    // Traverse remaining subarrays of size K
    // using sliding window technique
    for (int i = M; i < N; i++)
    {
 
      // If the first element of
      // the subarray is even
      if (arr[i - M] % 2 == 0)
      {
 
        // Update curr
        curr--;
      }
 
      // If i-th element is even increment
      // the count
      if (arr[i] % 2 == 0)
        curr++;
 
      // Update the answer
      ans = Math.max(ans, curr);
    }
 
    // Return answer
    return ans;
  }
 
  // Driver Code
  public static void main(String[] args)
  {
    int arr[] = { 2, 3, 5, 4, 7, 6 };
    int M = 3;
 
    // Size of the input array
    int N = arr.length;
 
    // Function call
    System.out.print(maxEvenIntegers(arr, N, M) +"\n");
 
  }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to implement
# the above approach
 
# Function to find the maximum count of
# even numbers from all the subarrays of
# size M
def maxEvenIntegers(arr, N, M):
   
    # Stores the count of even numbers
    # in a subarray of size M
    curr = 0
     
    # Calculate the count of even numbers
    # in the current subarray
    for i in range(0, M):
       
        # If current element is
        # an even number
        if(arr[i] % 2 == 0):
            curr += 1
             
    # Stores the maximum count of even numbers
    # from all the subarrays of size M
    ans = curr
     
    # Traverse remaining subarrays of size M
    # using sliding window technique
    for i in range(M, N):
       
        # If the first element of
        # the subarray is even
        if(arr[i - M] % 2 == 0):
           
            # update curr
            curr -= 1
             
        # If i-th element is even increment
        # the count
        if(arr[i] % 2 == 0):
            curr += 1
             
            # update the answer
            ans = max(curr, ans)
             
    # Return answer
    return ans
 
# Driver Code
if __name__ == '__main__':
    arr = [2, 3, 5, 4, 7, 6]
    M = 3
     
    # Size of the input array
    N = len(arr)
     
    # Function call
    print(maxEvenIntegers(arr, N, M))
 
# This code is contributed by MuskanKalra1


C#




// C# program to implement
// the above approach
using System;
 
class GFG
{
 
  // Function to find the maximum count of
  // even numbers from all the subarrays of
  // size K
  static int maxEvenints(int []arr, int N, int M)
  {
 
    // Stores the count of even numbers
    // in a subarray of size K
    int curr = 0;
 
    // Calculate the count of even numbers
    // in the current subarray
    for (int i = 0; i < M; i++)
    {
 
      // If current element is
      // an even number
      if (arr[i] % 2 == 0)
        curr++;
    }
 
    // Stores the maximum count of even numbers
    // from all the subarrays of size K
    int ans = curr;
 
    // Traverse remaining subarrays of size K
    // using sliding window technique
    for (int i = M; i < N; i++)
    {
 
      // If the first element of
      // the subarray is even
      if (arr[i - M] % 2 == 0)
      {
 
        // Update curr
        curr--;
      }
 
      // If i-th element is even increment
      // the count
      if (arr[i] % 2 == 0)
        curr++;
 
      // Update the answer
      ans = Math.Max(ans, curr);
    }
 
    // Return answer
    return ans;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
    int []arr = { 2, 3, 5, 4, 7, 6 };
    int M = 3;
 
    // Size of the input array
    int N = arr.Length;
 
    // Function call
    Console.Write(maxEvenints(arr, N, M) +"\n");
  }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript program to implement
// the above approach
 
  // Function to find the maximum count of
  // even numbers from all the subarrays of
  // size K
  function maxEvenLetegers(arr, N, M)
  {
  
    // Stores the count of even numbers
    // in a subarray of size K
    let curr = 0;
  
    // Calculate the count of even numbers
    // in the current subarray
    for (let i = 0; i < M; i++)
    {
  
      // If current element is
      // an even number
      if (arr[i] % 2 == 0)
        curr++;
    }
  
    // Stores the maximum count of even numbers
    // from all the subarrays of size K
    let ans = curr;
  
    // Traverse remaining subarrays of size K
    // using sliding window technique
    for (let i = M; i < N; i++)
    {
  
      // If the first element of
      // the subarray is even
      if (arr[i - M] % 2 == 0)
      {
  
        // Update curr
        curr--;
      }
  
      // If i-th element is even increment
      // the count
      if (arr[i] % 2 == 0)
        curr++;
  
      // Update the answer
      ans = Math.max(ans, curr);
    }
  
    // Return answer
    return ans;
  }
 
// Driver Code
 
    let arr = [ 2, 3, 5, 4, 7, 6 ];
    let M = 3;
  
    // Size of the input array
    let N = arr.length;
  
    // Function call
    document.write(maxEvenLetegers(arr, N, M) +"\n");
      
     // This code is contributed by souravghosh0416.
</script>


Output: 

2

 

Time Complexity: O(N)

Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments