Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximum distinct Subarray formed by adding or subtracting k

Maximum distinct Subarray formed by adding or subtracting k

Given an array arr[] of length n and an integer k, the task is to find the length of the maximum distinct subarray formed after adding k or subtracting k or none.

Examples:

Input: arr = [1, 2, 3, 4, 5], k = 1
Output: 5
Explanation: In this test case, the array has 5 distinct elements, and k is 1. The subarray with the maximum number of distinct elements is the entire array, so the function should return 5.

Input: arr = [1, 2, 3, 3, 4, 5], k = 0
Output: 3
Explanation: In this test case, the array has 5 distinct elements, and k is 0. The subarray with the maximum number of distinct elements is [1, 2, 3] and [3, 4, 5], so the function should return 3.

Approach: The above problem can be solved with the below:

The approach used in the algorithm is to iterate through the elements in the array and maintain a set of distinct elements in the current subarray. At each step, the algorithm checks if the current element x or x k or x + k is in the set. 

  • If x is not in the set, it is added to the set. 
  • If x – k is in the set, it is removed and x is added to the set.
  • If x + k is in the set, it is removed and x is added to the set. 

In this way, the set always contains the distinct elements in the current subarray, and the size of the set is equal to the length of the current distinct subarray. The maximum length of the distinct subarray is updated whenever the size of the set is larger than the current maximum length.

This approach works because the addition or subtraction of k to or from an element does not change the distinctness of the element. If an element is distinct, adding or subtracting k to or from it will still make it distinct. Similarly, if an element is not distinct, adding or subtracting k to or from it will still make it not distinct. Therefore, adding or subtracting k to or from an element does not effect the distinctness of the elements in the current subarray.

Follow the given steps to solve the problem:

  • Initialize a variable max_length to 0. This variable will keep track of the maximum length of the distinct subarray found so far.
  • Initialize a set of distinct_elements to an empty set. This set will store the distinct elements in the current subarray.
  • Iterate through the elements in the array. For each element x, do the following:
    • If x – k or x + k is not in the set distinct_elements, add x to the set.
    • If x – k or x + k is in the set distinct_elements, remove x – k or x + k from the set and add x to the set.
    • Update the variable max_length to the maximum of max_length and the size of the set distinct_elements.
  • Return max_length.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find distinct subarray
int max_distinct_subarray(int arr[], int n, int k) {
  int max_length = 0;
  set<int> distinct_elements;
 
  for (int i = 0; i < n; i++)
  {
 
    // If arr[i] - k and arr[i] + k is present
    if (distinct_elements.find(arr[i] - k) == distinct_elements.end() && distinct_elements.find(arr[i] + k) == distinct_elements.end()) {
      distinct_elements.insert(arr[i]);
    }
 
    // If arr[i] - k is present and add arr[i]
    else if (distinct_elements.find(arr[i] - k) != distinct_elements.end()) {
      distinct_elements.erase(arr[i] - k);
      distinct_elements.insert(arr[i]);
    }
 
    // If arr[i] + k is present and add arr[i]
    else if (distinct_elements.find(arr[i] + k) != distinct_elements.end()) {
      distinct_elements.erase(arr[i] + k);
      distinct_elements.insert(arr[i]);
    }
 
    // Update the maximum length
    max_length = max(max_length, (int)distinct_elements.size());
  }
  return max_length;
}
 
// Drive Code
int main() {
 
  // Input
  int arr[] = {1, 2, 3, 4, 5};
  int k = 0;
  int n = sizeof(arr) / sizeof(arr[0]);
 
  // Function call
  cout << max_distinct_subarray(arr, n, k) << "\n" ;
  return 0;
}
 
// This code is contributed by nikhilsainiofficial546


Java




// Java implementation of the above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
  static int maxDistinctSubarray(int[] arr, int n, int k)
  {
    int maxLength = 0;
    Set<Integer> distinctElements = new HashSet<>();
 
    for (int i = 0; i < n; i++)
    {
       
      // If arr[i] - k and arr[i] + k is not present
      if (!distinctElements.contains(arr[i] - k)
          && !distinctElements.contains(arr[i] + k)) {
        distinctElements.add(arr[i]);
      }
       
      // If arr[i] - k is present and add arr[i]
      else if (distinctElements.contains(arr[i]
                                         - k)) {
        distinctElements.remove(arr[i] - k);
        distinctElements.add(arr[i]);
      }
      // If arr[i] + k is present and add arr[i]
      else if (distinctElements.contains(arr[i]
                                         + k)) {
        distinctElements.remove(arr[i] + k);
        distinctElements.add(arr[i]);
      }
 
      // Update the maximum length
      maxLength = Math.max(maxLength,
                           distinctElements.size());
    }
 
    return maxLength;
  }
 
  public static void main(String[] args)
  {
    // Input
    int[] arr = { 1, 2, 3, 4, 5 };
    int k = 0;
    int n = arr.length;
 
    // Function call
    System.out.println(maxDistinctSubarray(arr, n, k));
  }
}
 
// This code is contributed by lokesh.


Python3




# Python implementation of the above approach
 
# Function to find distinct subarray
 
 
def max_distinct_subarray(arr, k):
 
    max_length = 0
    distinct_elements = set()
 
    for x in arr:
 
        # If x - k and x + k is present
        if x - k not in distinct_elements and x + k not in distinct_elements:
            distinct_elements.add(x)
 
        # If x - k is present and add x
        elif x - k in distinct_elements:
 
            distinct_elements.remove(x - k)
            distinct_elements.add(x)
 
         # If x + k is present and add x
        elif x + k in distinct_elements:
 
            distinct_elements.remove(x + k)
            distinct_elements.add(x)
 
        # Update the maximum length
        max_length = max(max_length, len(distinct_elements))
 
    return max_length
 
# Driver code
 
 
# Input
arr = [1, 2, 3, 4, 5]
k = 0
 
# Function call
print(max_distinct_subarray(arr, k))


C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
 
public class GFG {
 
  static int maxDistinctSubarray(int[] arr, int n, int k)
  {
    int maxLength = 0;
    HashSet<int> distinctElements = new HashSet<int>();
    for (int i = 0; i < n; i++)
    {
 
      // If arr[i] - k and arr[i] + k is not present
      if (!distinctElements.Contains(arr[i] - k)
          && !distinctElements.Contains(arr[i] + k)) {
        distinctElements.Add(arr[i]);
      }
 
      // If arr[i] - k is present and add arr[i]
      else if (distinctElements.Contains(arr[i]
                                         - k)) {
        distinctElements.Remove(arr[i] - k);
        distinctElements.Add(arr[i]);
      }
      // If arr[i] + k is present and add arr[i]
      else if (distinctElements.Contains(arr[i]
                                         + k)) {
        distinctElements.Remove(arr[i] + k);
        distinctElements.Add(arr[i]);
      }
 
      // Update the maximum length
      maxLength = Math.Max(maxLength,
                           distinctElements.Count);
    }
 
    return maxLength;
  }
 
  static public void Main()
  {
 
    // Input
    int[] arr = { 1, 2, 3, 4, 5 };
    int k = 0;
    int n = arr.Length;
 
    // Function call
    Console.WriteLine(maxDistinctSubarray(arr, n, k));
  }
}
 
// This code is contributed by lokeshmvs21.


Javascript




// Javascript implementation of the above approach
 
// Function to find distinct subarray
function max_distinct_subarray(arr, n, k) {
  let max_length = 0;
  let distinct_elements=new Set();
 
  for (let i = 0; i < n; i++)
  {
 
    // If arr[i] - k and arr[i] + k is present
    if (!distinct_elements.has(arr[i] - k) && !distinct_elements.has(arr[i] + k)) {
      distinct_elements.add(arr[i]);
    }
 
    // If arr[i] - k is present and add arr[i]
    else if (distinct_elements.has(arr[i] - k)) {
      distinct_elements.delete(arr[i] - k);
      distinct_elements.add(arr[i]);
    }
 
    // If arr[i] + k is present and add arr[i]
    else if (distinct_elements.has(arr[i] + k)) {
      distinct_elements.delete(arr[i] + k);
      distinct_elements.add(arr[i]);
    }
 
    // Update the maximum length
    max_length = Math.max(max_length, distinct_elements.size);
  }
  return max_length;
}
 
// Drive Code
// Input
let arr = [1, 2, 3, 4, 5];
let k = 0;
let n = arr.length;
 
// Function call
console.log(max_distinct_subarray(arr, n, k)) ;
 
// This code is contributed by poojaagarwal2.


Output

5

Time complexity: O(n)
Auxiliary space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
24 Jan, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments