Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximum distance between adjacent 1s in given Binary String

Maximum distance between adjacent 1s in given Binary String

Given a binary string S containing N characters, the task is to find the maximum distance between two adjacent 1’s

Examples:

Input: S = “1010010”
Output: 3
Explanation: There are 2 sets of adjacent 1’s in the given index on the indices {0, 2} and {2, 5}. 
The one with the maximum distance among them is {2, 5} with a distance of 3 units.

Input: S = “100000”
Output: -1
Explanation: No set of adjacent 1’s exist in the given string.

 

Naive Approach:

The naive approach is to use two nested loops to find the distance between each adjacent 1’s. On getting the adjacent ones, update the maximum distance with the max of the previous maximum and current distance between the ones.

Algorithm:

        1. Create a function to find the maximum distance between two adjacent 1’s, that takes a binary string S as input.

        2. Initialize variables maxDist to -1.

        3. Traverse the string S:
                 a. If the current character is 1:
                      Traverse the string S from the current index to the end:
                           If the next character is 1:
                                 i. Calculate the distance between the current and next 1.
                                 ii. Update the maximum distance if the current distance is greater than the previous maximum.
                                 iii. Break out of the inner loop as we have found the next 1.
        4. Return the maximum distance.

Below is the implementation of the approach:

C++




// C++ code for the approach
 
#include<bits/stdc++.h>
using namespace std;
 
// function to find maximum distance between two adjacent 1's
int maxDistance(string s) {
    int n = s.length();
    int maxDist = -1;
    for(int i=0; i<n; i++) {
          // if current character is 1
        if(s[i] == '1') {
            for(int j=i+1; j<n; j++) {
                  // if next character is also 1
                if(s[j] == '1') {
                      // calculate distance between current and next 1
                    int dist = j - i;
                   
                      // update maximum distance and break
                    maxDist = max(maxDist, dist);
                    break;
                }
            }
        }
    }
   
      // return maximum distance
    return maxDist;
}
 
int main() {   
      string S = "1010010";
   
      // Function call
    cout << maxDistance(S) << endl;
   
    return 0;
}


Java




import java.io.*;
 
class GFG {
   
    // Function to find the maximum distance between two adjacent '1's
    public static int maxDistance(String s) {
        int n = s.length();
        int maxDist = -1;
         
        for (int i = 0; i < n; i++) {
            // If current character is '1'
            if (s.charAt(i) == '1') {
                for (int j = i + 1; j < n; j++) {
                    // If next character is also '1'
                    if (s.charAt(j) == '1') {
                        // Calculate the distance between current and next '1'
                        int dist = j - i;
                         
                        // Update the maximum distance and break
                        maxDist = Math.max(maxDist, dist);
                        break;
                    }
                }
            }
        }
        return maxDist;
    }
    public static void main (String[] args) {
        String S = "1010010";
 
        // Function call
        System.out.println(maxDistance(S));
    }
}
   
 // code contributed by shinjanpatra


Python




def maxDistance(s):
    n = len(s)
    max_dist = -1
    i = 0
 
    while i < n:
        # If current character is '1'
        if s[i] == '1':
            j = i + 1
 
            # Find the next '1'
            while j < n:
                if s[j] == '1':
                    # Calculate the distance between current and next '1'
                    dist = j - i
 
                    # Update the maximum distance and break
                    max_dist = max(max_dist, dist)
                    break
                j += 1
 
            i = j
        else:
            i += 1
 
    # Return the maximum distance
    return max_dist
 
 
# Main function
if __name__ == "__main__":
    S = "1010010"
 
    # Function call
    print(maxDistance(S))


C#




using System;
 
class Program
{
    // Function to find maximum distance between two adjacent 1's
    static int MaxDistance(string s)
    {
        int n = s.Length;
        int maxDist = -1;
        for (int i = 0; i < n; i++)
        {
            // If current character is '1'
            if (s[i] == '1')
            {
                for (int j = i + 1; j < n; j++)
                {
                    // If next character is also '1'
                    if (s[j] == '1')
                    {
                        // Calculate distance between current and next '1'
                        int dist = j - i;
 
                        // Update maximum distance and break
                        maxDist = Math.Max(maxDist, dist);
                        break;
                    }
                }
            }
        }
 
        // Return maximum distance
        return maxDist;
    }
 
    static void Main(string[] args)
    {
        string S = "1010010";
 
        // Function call
        Console.WriteLine(MaxDistance(S));
    }
}


Javascript




// Function to find the maximum distance between two adjacent '1's
function maxDistance(s) {
    const n = s.length;
    let maxDist = -1;
 
    for (let i = 0; i < n; i++) {
        // If current character is '1'
        if (s.charAt(i) === '1') {
            for (let j = i + 1; j < n; j++) {
                // If next character is also '1'
                if (s.charAt(j) === '1') {
                    // Calculate the distance between current and next '1'
                    const dist = j - i;
 
                    // Update the maximum distance and break
                    maxDist = Math.max(maxDist, dist);
                    break;
                }
            }
        }
    }
    return maxDist;
}
 
// Test the function
const S = "1010010";
console.log(maxDistance(S));


Output

3




Time Complexity: O(N*N) as two nested loops are executing. Here, N is size of input binary string.
Space Complexity: O(1) as no extra space has been used.

Approach: The given problem is an implementation-based problem. The idea is to store all the indices of 1’s in increasing order in a vector. Hence it can be observed that the required answer will be the maximum of the difference of consecutive integers in the index vector.

Below is the implementation of the above approach:

C++14




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum
// distance between two adjacent
// 1's in a given binary string
int maxDist(string S)
{
    // Stores the required answer
    int maxLen = INT_MIN;
 
    // Vector to store indices
    vector<int> indices;
 
    // Loop to traverse string
    for (int i = 0; i < S.length(); i++) {
        if (S[i] == '1')
            indices.push_back(i);
    }
 
    // Loop to reverse the
    // index vector
    for (int i = 1; i < indices.size(); i++)
 
        // Update maximum distance
        maxLen = max(maxLen, indices[i] -
                     indices[i - 1]);
 
    // Return Answer
    return maxLen == INT_MIN ? -1 : maxLen;
}
 
// Driver Code
int main()
{
    string S = "1010010";
    cout << maxDist(S);
    return 0;
}


Java




// Java program of the above approach
import java.io.*;
import java.util.*;
 
class GFG
{
 
  // Function to find the maximum
  // distance between two adjacent
  // 1's in a given binary String
  public static int maxDist(String S)
  {
     
    // Stores the required answer
    int maxLen = Integer.MIN_VALUE;
 
    // Vector to store indices
    Vector<Integer> indices = new Vector<Integer>();
 
    // Loop to traverse String
    for (int i = 0; i < S.length(); i++) {
      if (S.charAt(i) == '1')
        indices.add(i);
    }
 
    // Loop to reverse the
    // index vector
    for (int i = 1; i < indices.size(); i++)
 
      // Update maximum distance
      maxLen = Math.max(maxLen, indices.get(i) -
                        indices.get(i - 1));
 
    // Return Answer
    return maxLen == Integer.MIN_VALUE ? -1 : maxLen;
  }
 
  // Driver Code
  public static void main (String[] args)
  {
    String S = "1010010";
    System.out.println(maxDist(S));
  }
}
 
// This code is contributed by subhamsingh10.


Python3




# Python code for the above approach
 
# Function to find the maximum
# distance between two adjacent
# 1's in a given binary string
def maxDist(S):
 
    # Stores the required answer
    maxLen = 10 ** -9
 
    # Vector to store indices
    indices = []
 
    # Loop to traverse string
    for i in range(len(S)):
        if S[i] == "1":
            indices.append(i)
 
    # Loop to reverse the
    # index vector
    for i in range(1, len(indices)):
 
        # Update maximum distance
        maxLen = max(maxLen, indices[i] - indices[i - 1])
 
    # Return Answer
    return -1 if (maxLen == 10 ** -9) else maxLen
 
# Driver Code
S = "1010010"
print(maxDist(S))
 
# This code is contributed by gfgking


C#




// C# program for above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
  // Function to find the maximum
  // distance between two adjacent
  // 1's in a given binary string
  static int maxDist(string S)
  {
 
    // Stores the required answer
    int maxLen = Int32.MinValue;
 
    // Vector to store indices
    List<int> indices = new List<int>();
 
    // Loop to traverse string
    for (int i = 0; i < S.Length; i++) {
      if (S[i] == '1')
        indices.Add(i);
    }
 
    // Loop to reverse the
    // index vector
    for (int i = 1; i < indices.Count; i++)
 
      // Update maximum distance
      maxLen = Math.Max(maxLen, indices[i] -
                        indices[i - 1]);
 
    // Return Answer
    if(maxLen == Int32.MinValue)
      return  -1;
    else
      return maxLen;
  }
 
  // Driver code
  static public void Main ()
  {
 
    string S = "1010010";
    Console.WriteLine(maxDist(S));
  }
}
// This code is contributed by hrithikgarg03188


Javascript




  <script>
      // JavaScript code for the above approach
 
      // Function to find the maximum
      // distance between two adjacent
      // 1's in a given binary string
      function maxDist(S)
      {
       
          // Stores the required answer
          let maxLen = Number.MIN_VALUE;
 
          // Vector to store indices
          let indices = [];
 
          // Loop to traverse string
          for (let i = 0; i < S.length; i++) {
              if (S[i] == '1')
                  indices.push(i);
          }
 
          // Loop to reverse the
          // index vector
          for (let i = 1; i < indices.length; i++)
 
              // Update maximum distance
              maxLen = Math.max(maxLen, indices[i] -
                  indices[i - 1]);
 
          // Return Answer
          return maxLen == Number.MIN_VALUE ? -1 : maxLen;
      }
 
      // Driver Code
      let S = "1010010";
      document.write(maxDist(S));
 
// This code is contributed by Potta Lokesh
  </script>


Output

3




Time Complexity: O(N)
Auxiliary Space: O(N)   where N is the length of the Binary String.

 Space-Efficient Approach: The above approach can also be implemented without using any extra space (vector). The only change is to achieve maximum distance by rigorous difference storing and updation every time we found 1 in the binary string.

C++14




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum
// distance between two adjacent
// 1's in a given binary string
int maxDist(string S)
{
    // Stores the required answer
    int maxLen=0,i,start=0;
 
    // Loop to find first occurrence of '1' string
    for ( i = 0; i < S.length(); i++) {
        if (S[i] == '1')
        {
            start=i;
            break;
        }
    }
 
    // Loop to traverse remaining
    // indices of character '1'
    for (; i < S.length(); i++){
     
        // Update maximum distance
            if (S[i] == '1')
        {
            maxLen=max(maxLen,i-start);
            start=i;
        }
    }       
 
    // Return Answer
    return maxLen == 0 ? -1 : maxLen;
}
 
// Driver Code
int main()
{
    string S = "100000";
    cout << maxDist(S);
    return 0;
}


Java




// Java program of the above approach
 
import java.util.*;
 
class GFG{
 
// Function to find the maximum
// distance between two adjacent
// 1's in a given binary String
static int maxDist(String S)
{
    // Stores the required answer
    int maxLen=0,i,start=0;
 
    // Loop to find first occurrence of '1' String
    for ( i = 0; i < S.length(); i++) {
        if (S.charAt(i) == '1')
        {
            start=i;
            break;
        }
    }
 
    // Loop to traverse remaining
    // indices of character '1'
    for (; i < S.length(); i++){
     
        // Update maximum distance
            if (S.charAt(i) == '1')
        {
            maxLen=Math.max(maxLen,i-start);
            start=i;
        }
    }       
 
    // Return Answer
    return maxLen == 0 ? -1 : maxLen;
}
 
// Driver Code
public static void main(String[] args)
{
    String S = "100000";
    System.out.print(maxDist(S));
}
}
 
// This code contributed by Rajput-Ji


Python3




# Python program of the above approach
 
 
 
 
 
# Function to find the maximum
# distance between two adjacent
# 1's in a given binary String
def maxDist(S):
    # Stores the required answer
    maxLen = 0;
    start = 0;
 
    # Loop to find first occurrence of '1' String
    for i in range(len(S)):
        if (S[i] == '1'):
            start = i;
            break;
         
     
 
    # Loop to traverse remaining
    # indices of character '1'
    for i in range(start,len(S)):
 
        # Update maximum distance
        if (S[i] == '1'):
            maxLen = max(maxLen, i - start);
            start = i;
         
     
 
    # Return Answer
    if(maxLen == 0):
        return -1;
    else:
        return maxLen;
 
 
# Driver Code
if __name__ == '__main__':
    S = "100000";
    print(maxDist(S));
 
 
# This code contributed by Rajput-Ji


C#




// C# program of the above approach
using System;
public class GFG {
 
  // Function to find the maximum
  // distance between two adjacent
  // 1's in a given binary String
  static public int maxDist(String S)
  {
 
    // Stores the required answer
    int maxLen = 0, i, start = 0;
 
    // Loop to find first occurrence of '1' String
    for (i = 0; i < S.Length; i++) {
      if (S[i] == '1') {
        start = i;
        break;
      }
    }
 
    // Loop to traverse remaining
    // indices of character '1'
    for (; i < S.Length; i++) {
 
      // Update maximum distance
      if (S[i] == '1') {
        maxLen = Math.Max(maxLen, i - start);
        start = i;
      }
    }
 
    // Return Answer
    return maxLen == 0 ? -1 : maxLen;
  }
 
  // Driver Code
  public static void Main(String[] args) {
    String S = "100000";
    Console.Write(maxDist(S));
  }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// javascript program of the above approach   
// Function to find the maximum
    // distance between two adjacent
    // 1's in a given binary String
    function maxDist( S)
    {
     
        // Stores the required answer
        var maxLen = 0, i, start = 0;
 
        // Loop to find first occurrence of '1' String
        for (i = 0; i < S.length; i++) {
            if (S.charAt(i) == '1') {
                start = i;
                break;
            }
        }
 
        // Loop to traverse remaining
        // indices of character '1'
        for (; i < S.length; i++) {
 
            // Update maximum distance
            if (S.charAt(i) == '1') {
                maxLen = Math.max(maxLen, i - start);
                start = i;
            }
        }
 
        // Return Answer
        return maxLen == 0 ? -1 : maxLen;
    }
 
    // Driver Code
        var S = "100000";
        document.write(maxDist(S));
 
// This code is contributed by Rajput-Ji
</script>


Output

-1




Time Complexity: O(N)
Auxiliary Space: O(1), where N is the length of the Binary String.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments