Given binary square matrix [n*n]. Find maximum integer value in a path from top left to bottom right. We compute integer value using bits of traversed path. We start at index [0,0] and end at index [n-1][n-1]. from index [i, j], we can move [i, j+1] or [i+1, j].
Examples:
Input : mat[][] = {{1, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 1}, {1, 0, 1, 1}} Output : 111 Explanation : Path : (0,0) -> (0,1) -> (1,1) -> (1,2) -> (2,2) -> (3,2) ->(3,3) Decimal value : 1*(2^0) + 1*(2^1) + 1*(2^2) + 1*(2^3) + 0*(2^4) + 1*(2^5) + 1*(2^6) = 111
The above problem can be recursively defined as below:
// p indicates power of 2, initially p = i = j = 0 MaxDecimalValue(mat, i, j, p) // If i or j is our of boundary If i >= n || j >= n return 0 // Compute rest of matrix find maximum decimal value result max(MaxDecimalValue(mat, i, j+1, p+1), MaxDecimalValue(mat, i+1, j, p+1)) If mat[i][j] == 1 return power(2, p) + result Else return result
Below is the implementation of above recursive algorithm.
C++
// C++ program to find maximum decimal value path in // binary matrix #include<bits/stdc++.h> using namespace std; #define N 4 // Returns maximum decimal value in binary matrix. // Here p indicate power of 2 long long int maxDecimalValue( int mat[][N], int i, int j, int p) { // Out of matrix boundary if (i >= N || j >= N ) return 0; int result = max(maxDecimalValue(mat, i, j+1, p+1), maxDecimalValue(mat, i+1, j, p+1)); // If current matrix value is 1 then return result + // power(2, p) else result if (mat[i][j] == 1) return pow (2, p) + result; else return result; } //Driver program int main() { int mat[][4] = {{ 1 ,1 ,0 ,1 }, { 0 ,1 ,1 ,0 }, { 1 ,0 ,0 ,1 }, { 1 ,0 ,1 ,1 }, }; cout << maxDecimalValue(mat, 0, 0, 0) << endl; return 0; } |
Java
// Java program to find maximum decimal value path in // binary matrix class GFG { static final int N = 4 ; // Returns maximum decimal value in binary matrix. // Here p indicate power of 2 static int maxDecimalValue( int mat[][], int i, int j, int p) { // Out of matrix boundary if (i >= N || j >= N) { return 0 ; } int result = Math.max(maxDecimalValue(mat, i, j + 1 , p + 1 ), maxDecimalValue(mat, i + 1 , j, p + 1 )); // If current matrix value is 1 then return result + // power(2, p) else result if (mat[i][j] == 1 ) { return ( int ) (Math.pow( 2 , p) + result); } else { return result; } } // Driver program public static void main(String[] args) { int mat[][] = {{ 1 , 1 , 0 , 1 }, { 0 , 1 , 1 , 0 }, { 1 , 0 , 0 , 1 }, { 1 , 0 , 1 , 1 },}; System.out.println(maxDecimalValue(mat, 0 , 0 , 0 )); } } //this code contributed by Rajput-Ji |
Python3
# Python3 program to find maximum decimal # value path in binary matrix N = 4 # Returns maximum decimal value in binary # matrix. Here p indicate power of 2 def maxDecimalValue(mat, i, j, p): # Out of matrix boundary if i > = N or j > = N: return 0 result = max ( maxDecimalValue(mat, i, j + 1 , p + 1 ), maxDecimalValue(mat, i + 1 , j, p + 1 )) # If current matrix value is 1 then # return result + power(2, p) else # result if mat[i][j] = = 1 : return pow ( 2 , p) + result else : return result # Driver Program mat = [ [ 1 , 1 , 0 , 1 ], [ 0 , 1 , 1 , 0 ], [ 1 , 0 , 0 , 1 ], [ 1 , 0 , 1 , 1 ] ] print (maxDecimalValue(mat, 0 , 0 , 0 )) # This code is contributed by Shrikant13. |
C#
// C# program to find maximum decimal value path in // binary matrix using System; class GFG { static int N = 4; // Returns maximum decimal value in binary matrix. // Here p indicate power of 2 static int maxDecimalValue( int [,] mat, int i, int j, int p) { // Out of matrix boundary if (i >= N || j >= N) { return 0; } int result = Math.Max(maxDecimalValue(mat, i, j + 1, p + 1), maxDecimalValue(mat, i + 1, j, p + 1)); // If current matrix value is 1 then return result + // power(2, p) else result if (mat[i,j] == 1) { return ( int ) (Math.Pow(2, p) + result); } else { return result; } } // Driver program public static void Main() { int [,] mat = {{1, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 1}, {1, 0, 1, 1},}; Console.Write(maxDecimalValue(mat, 0, 0, 0)); } } // This code is contributed by Ita_c. |
PHP
<?php // PHP program to find maximum // decimal value path in binary // matrix // Returns maximum decimal value // in binary matrix. Here p // indicate power of 2 function maxDecimalValue( $mat , $i , $j , $p ) { $N =4; // Out of matrix boundary if ( $i >= $N || $j >= $N ) return 0; $result = max(maxDecimalValue( $mat , $i , $j + 1, $p + 1), maxDecimalValue( $mat , $i + 1, $j , $p + 1)); // If current matrix value // is 1 then return result + // power(2, p) else result if ( $mat [ $i ][ $j ] == 1) return pow(2, $p ) + $result ; else return $result ; } // Driver Code $mat = array ( array (1 ,1 ,0 ,1), array (0 ,1 ,1 ,0), array (1 ,0 ,0 ,1), array (1 ,0 ,1 ,1)); echo maxDecimalValue( $mat , 0, 0, 0) ; // This code is contributed by nitin mittal. ?> |
Javascript
<script> // JavaScript program to find maximum // decimal value path in binary matrix let N = 4; // Returns maximum decimal value in // binary matrix.Here p indicate power of 2 function maxDecimalValue(mat, i, j, p) { // Out of matrix boundary if (i >= N || j >= N) { return 0; } let result = Math.max(maxDecimalValue(mat, i, j + 1, p + 1), maxDecimalValue(mat, i + 1, j, p + 1)); // If current matrix value is 1 then // return result + power(2, p) else result if (mat[i][j] == 1) { return (Math.pow(2, p) + result); } else { return result; } } // Driver Code let mat = [ [ 1, 1, 0, 1 ], [ 0, 1, 1, 0 ], [ 1, 0, 0, 1 ], [ 1, 0, 1, 1 ] ]; document.write(maxDecimalValue(mat, 0, 0, 0)); // This code is contributed by souravghosh0416 </script> |
Output:
111
The time complexity of above recursive solution is exponential.
Space Complexity:O(1),since no extra space required.
Here matrix [3][3] (2 2) / \ (1 2) (2 1) / \ / \ (0 2) (1 1) (1 1) (2 1) / \ / \ / \ / \ . . . . . . . . . . . . . . . . and so no
If we see recursion tree of above recursive solution, we can observe overlapping sub-problems. Since the problem has overlapping subproblems, we can solve it efficiently using Dynamic Programming. Below is Dynamic Programming based solution.
Below is the implementation of above problem using Dynamic Programming
C++
// C++ program to find Maximum decimal value Path in // Binary matrix #include<bits/stdc++.h> using namespace std; #define N 4 // Returns maximum decimal value in binary matrix. // Here p indicate power of 2 long long int MaximumDecimalValue( int mat[][N], int n) { int dp[n][n]; memset (dp, 0, sizeof (dp)); if (mat[0][0] == 1) dp[0][0] = 1 ; // 1*(2^0) // Compute binary stream of first row of matrix // and store result in dp[0][i] for ( int i=1; i<n; i++) { // indicate 1*(2^i) + result of previous if (mat[0][i] == 1) dp[0][i] = dp[0][i-1] + pow (2, i); // indicate 0*(2^i) + result of previous else dp[0][i] = dp[0][i-1]; } // Compute binary stream of first column of matrix // and store result in dp[i][0] for ( int i = 1 ; i <n ; i++ ) { // indicate 1*(2^i) + result of previous if (mat[i][0] == 1) dp[i][0] = dp[i-1][0] + pow (2, i); // indicate 0*(2^i) + result of previous else dp[i][0] = dp[i-1][0]; } // Traversal rest Binary matrix and Compute maximum // decimal value for ( int i=1 ; i < n ; i++ ) { for ( int j=1 ; j < n ; j++ ) { // Here (i+j) indicate the current power of // 2 in path that is 2^(i+j) if (mat[i][j] == 1) dp[i][j] = max(dp[i][j-1], dp[i-1][j]) + pow (2, i+j); else dp[i][j] = max(dp[i][j-1], dp[i-1][j]); } } // Return maximum decimal value in binary matrix return dp[n-1][n-1]; } // Driver program int main() { int mat[][4] = {{ 1 ,1 ,0 ,1 }, { 0 ,1 ,1 ,0 }, { 1 ,0 ,0 ,1 }, { 1 ,0 ,1 ,1 }, }; cout << MaximumDecimalValue(mat, 4) << endl; return 0; } |
Java
// Java program to find Maximum decimal value Path in // Binary matrix public class GFG { final static int N = 4 ; // Returns maximum decimal value in binary matrix. // Here p indicate power of 2 static int MaximumDecimalValue( int mat[][], int n) { int dp[][] = new int [n][n]; if (mat[ 0 ][ 0 ] == 1 ) { dp[ 0 ][ 0 ] = 1 ; // 1*(2^0) } // Compute binary stream of first row of matrix // and store result in dp[0][i] for ( int i = 1 ; i < n; i++) { // indicate 1*(2^i) + result of previous if (mat[ 0 ][i] == 1 ) { dp[ 0 ][i] = ( int ) (dp[ 0 ][i - 1 ] + Math.pow( 2 , i)); } // indicate 0*(2^i) + result of previous else { dp[ 0 ][i] = dp[ 0 ][i - 1 ]; } } // Compute binary stream of first column of matrix // and store result in dp[i][0] for ( int i = 1 ; i < n; i++) { // indicate 1*(2^i) + result of previous if (mat[i][ 0 ] == 1 ) { dp[i][ 0 ] = ( int ) (dp[i - 1 ][ 0 ] + Math.pow( 2 , i)); } // indicate 0*(2^i) + result of previous else { dp[i][ 0 ] = dp[i - 1 ][ 0 ]; } } // Traversal rest Binary matrix and Compute maximum // decimal value for ( int i = 1 ; i < n; i++) { for ( int j = 1 ; j < n; j++) { // Here (i+j) indicate the current power of // 2 in path that is 2^(i+j) if (mat[i][j] == 1 ) { dp[i][j] = ( int ) (Math.max(dp[i][j - 1 ], dp[i - 1 ][j]) + Math.pow( 2 , i + j)); } else { dp[i][j] = Math.max(dp[i][j - 1 ], dp[i - 1 ][j]); } } } // Return maximum decimal value in binary matrix return dp[n - 1 ][n - 1 ]; } // Driver program public static void main(String[] args) { int mat[][] = {{ 1 , 1 , 0 , 1 }, { 0 , 1 , 1 , 0 }, { 1 , 0 , 0 , 1 }, { 1 , 0 , 1 , 1 },}; System.out.println(MaximumDecimalValue(mat, 4 )); } } /*This code is contributed by Rajput-Ji*/ |
Python3
# Python3 program to find Maximum decimal # value Path in # Binary matrix N = 4 # Returns maximum decimal value in binary matrix. # Here p indicate power of 2 def MaximumDecimalValue(mat, n): dp = [[ 0 for i in range (n)] for i in range (n)] if (mat[ 0 ][ 0 ] = = 1 ): dp[ 0 ][ 0 ] = 1 # 1*(2^0) # Compute binary stream of first row of matrix # and store result in dp[0][i] for i in range ( 1 ,n): # indicate 1*(2^i) + result of previous if (mat[ 0 ][i] = = 1 ): dp[ 0 ][i] = dp[ 0 ][i - 1 ] + 2 * * i # indicate 0*(2^i) + result of previous else : dp[ 0 ][i] = dp[ 0 ][i - 1 ] # Compute binary stream of first column of matrix # and store result in dp[i][0] for i in range ( 1 ,n): # indicate 1*(2^i) + result of previous if (mat[i][ 0 ] = = 1 ): dp[i][ 0 ] = dp[i - 1 ][ 0 ] + 2 * * i # indicate 0*(2^i) + result of previous else : dp[i][ 0 ] = dp[i - 1 ][ 0 ] # Traversal rest Binary matrix and Compute maximum # decimal value for i in range ( 1 ,n): for j in range ( 1 ,n): # Here (i+j) indicate the current power of # 2 in path that is 2^(i+j) if (mat[i][j] = = 1 ): dp[i][j] = max (dp[i][j - 1 ], dp[i - 1 ][j]) + ( 2 * * (i + j)) else : dp[i][j] = max (dp[i][j - 1 ], dp[i - 1 ][j]) # Return maximum decimal value in binary matrix return dp[n - 1 ][n - 1 ] # Driver program if __name__ = = '__main__' : mat = [[ 1 , 1 , 0 , 1 ], [ 0 , 1 , 1 , 0 ], [ 1 , 0 , 0 , 1 ], [ 1 , 0 , 1 , 1 ]] print (MaximumDecimalValue(mat, 4 )) #this code is contributed by sahilshelangia |
C#
// C# program to find Maximum decimal value Path in // Binary matrix using System; public class GFG { readonly static int N = 4; // Returns maximum decimal value in binary matrix. // Here p indicate power of 2 static int MaximumDecimalValue( int [,]mat, int n) { int [,]dp = new int [n,n]; if (mat[0,0] == 1) { dp[0,0] = 1; // 1*(2^0) } // Compute binary stream of first row of matrix // and store result in dp[0,i] for ( int i = 1; i < n; i++) { // indicate 1*(2^i) + result of previous if (mat[0,i] == 1) { dp[0,i] = ( int ) (dp[0,i - 1] + Math.Pow(2, i)); } // indicate 0*(2^i) + result of previous else { dp[0,i] = dp[0,i - 1]; } } // Compute binary stream of first column of matrix // and store result in dp[i,0] for ( int i = 1; i < n; i++) { // indicate 1*(2^i) + result of previous if (mat[i,0] == 1) { dp[i,0] = ( int ) (dp[i - 1,0] + Math.Pow(2, i)); } // indicate 0*(2^i) + result of previous else { dp[i,0] = dp[i - 1,0]; } } // Traversal rest Binary matrix and Compute maximum // decimal value for ( int i = 1; i < n; i++) { for ( int j = 1; j < n; j++) { // Here (i+j) indicate the current power of // 2 in path that is 2^(i+j) if (mat[i,j] == 1) { dp[i,j] = ( int ) (Math.Max(dp[i,j - 1], dp[i - 1,j]) + Math.Pow(2, i + j)); } else { dp[i,j] = Math.Max(dp[i,j - 1], dp[i - 1,j]); } } } // Return maximum decimal value in binary matrix return dp[n - 1,n - 1]; } // Driver program public static void Main() { int [,]mat = {{1, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 1}, {1, 0, 1, 1},}; Console.Write(MaximumDecimalValue(mat, 4)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program to find Maximum decimal value Path in // Binary matrix let N = 4; // Returns maximum decimal value in binary matrix. // Here p indicate power of 2 function MaximumDecimalValue(mat,n) { let dp= new Array(n); for (let i = 0; i < n; i++) { dp[i] = new Array(n); for (let j = 0; j < n; j++) { dp[i][j] = 0; } } if (mat[0][0] == 1) { dp[0][0] = 1; // 1*(2^0) } // Compute binary stream of first row of matrix // and store result in dp[0][i] for (let i = 1; i < n; i++) { // indicate 1*(2^i) + result of previous if (mat[0][i] == 1) { dp[0][i] = dp[0][i - 1] + Math.pow(2, i); } // indicate 0*(2^i) + result of previous else { dp[0][i] = dp[0][i - 1]; } } // Compute binary stream of first column of matrix // and store result in dp[i][0] for (let i = 1; i < n; i++) { // indicate 1*(2^i) + result of previous if (mat[i][0] == 1) { dp[i][0] = Math.floor(dp[i - 1][0] + Math.pow(2, i)); } // indicate 0*(2^i) + result of previous else { dp[i][0] = dp[i - 1][0]; } } // Traversal rest Binary matrix and Compute maximum // decimal value for (let i = 1; i < n; i++) { for (let j = 1; j < n; j++) { // Here (i+j) indicate the current power of // 2 in path that is 2^(i+j) if (mat[i][j] == 1) { dp[i][j] = Math.floor(Math.max(dp[i][j - 1], dp[i - 1][j]) + Math.pow(2, i + j)); } else { dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]); } } } // Return maximum decimal value in binary matrix return dp[n - 1][n - 1]; } // Driver program let mat = [[ 1 ,1 ,0 ,1 ], [ 0 ,1 ,1 ,0 ], [ 1 ,0 ,0 ,1 ], [ 1 ,0 ,1 ,1 ]]; document.write(MaximumDecimalValue(mat, 4)) // This code is contributed by rag2127. </script> |
Output:
111
Time Complexity : O(n2)
Auxiliary space : O(n2)
This article is contributed by Nishant_Singh (Pintu). If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!