Given an array arr[] of N positive integers and a number K, the task is to find the maximum value of bitwise OR of the subsequence of size K.
Examples:
Input: arr[] = {2, 5, 3, 6, 11, 13}, k = 3
Output: 15
Explanation:
The sub-sequence will maximum OR value is 2, 11, 13.Input: arr[] = {5, 9, 7, 19}, k = 3
Output: 31
Explanation:
The maximum value of bitwise OR of the subsequence of size K = 3 is 31.
Naive Approach: The naive approach is to generate all the subsequence of length K and find the Bitwise OR value of all subsequences. The maximum among all of them will be the answer.
Time Complexity: O(N2)
Auxiliary Space: O(K)
Efficient Approach: To optimize the above method try to implement the Greedy Approach. Below are the steps:
- Initialize an integer array bit[] of size 32 with all value equal to 0.
- Now iterate for each index of bit[] array from 31 to 0, and check if the ith value of bit array is 0 then iterate in the given array and find an element which contributes maximum 1 to our bit array after taking it.
- Take that element and change the bit array correspondingly, also decrease k each time by 1 if k > 0. Otherwise break out from the loop.
- Now convert the bit[] array into a decimal number to get final answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <iostream> using namespace std; // Function to convert bit array to // decimal number int build_num( int bit[]) { int ans = 0; for ( int i = 0; i < 32; i++) if (bit[i]) ans += (1 << i); // Return the final result return ans; } // Function to find the maximum Bitwise // OR value of subsequence of length K int maximumOR( int arr[], int n, int k) { // Initialize bit array of // size 32 with all value as 0 int bit[32] = { 0 }; // Iterate for each index of bit[] // array from 31 to 0, and check if // the ith value of bit array is 0 for ( int i = 31; i >= 0; i--) { if (bit[i] == 0 && k > 0) { int temp = build_num(bit); int temp1 = temp; int val = -1; for ( int j = 0; j < n; j++) { // Check for maximum // contributing element if (temp1 < (temp | arr[j])) { temp1 = temp | arr[j]; val = arr[j]; } } // Update the bit array // if max_contributing // element is found if (val != -1) { // Decrement the value of K k--; for ( int j = 0; j < 32; j++) { if (val & (1 << j)) bit[j]++; } } } } // Return the result return build_num(bit); } // Driver Code int main() { // Given array arr[] int arr[] = { 5, 9, 7, 19 }; // Length of subsequence int k = 3; int n = sizeof arr / sizeof arr[0]; // Function Call cout << maximumOR(arr, n, k); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to convert bit array to // decimal number static int build_num( int []bit) { int ans = 0 ; for ( int i = 0 ; i < 32 ; i++) if (bit[i] == 1 ) ans += ( 1 << i); ans += 32 ; // Return the final result return ans; } // Function to find the maximum Bitwise // OR value of subsequence of length K static int maximumOR( int []arr, int n, int k) { // Initialize bit array of // size 32 with all value as 0 int bit[] = new int [ 32 ]; // Iterate for each index of bit[] // array from 31 to 0, and check if // the ith value of bit array is 0 for ( int i = 31 ; i >= 0 ; i--) { if (bit[i] == 0 && k > 0 ) { int temp = build_num(bit); int temp1 = temp; int val = - 1 ; for ( int j = 0 ; j < n; j++) { // Check for maximum // contributing element if (temp1 < (temp | arr[j])) { temp1 = temp | arr[j]; val = arr[j]; } } // Update the bit array // if max_contributing // element is found if (val != - 1 ) { // Decrement the value of K k--; for ( int j = 0 ; j < 32 ; j++) { bit[j]++; } } } } // Return the result return build_num(bit); } // Driver Code public static void main(String[] args) { // Given array arr[] int arr[] = { 5 , 9 , 7 , 19 }; // Length of subsequence int k = 3 ; int n = arr.length; // Function call System.out.println(maximumOR(arr, n, k)); } } // This code is contributed by rock_cool |
Python3
# Python3 program to implement # above approach # Function to convert bit array to # decimal number def build_num(bit): ans = 0 for i in range ( 0 , 32 ): if (bit[i]): ans + = ( 1 << i) # Return the final result return ans; # Function to find the maximum Bitwise # OR value of subsequence of length K def maximumOR(arr, n, k): # Initialize bit array of # size 32 with all value as 0 bit = [ 0 ] * 32 # Iterate for each index of bit[] # array from 31 to 0, and check if # the ith value of bit array is 0 for i in range ( 31 , - 1 , - 1 ): if (bit[i] = = 0 and k > 0 ): temp = build_num(bit) temp1 = temp val = - 1 for j in range ( 0 , n): # Check for maximum # contributing element if (temp1 < (temp | arr[j])): temp1 = temp | arr[j] val = arr[j] # Update the bit array # if max_contributing # element is found if (val ! = - 1 ): # Decrement the value of K k - = 1 for j in range ( 0 , 32 ): if (val & ( 1 << j)): bit[j] + = 1 # Return the result return build_num(bit) # Driver Code # Given array arr[] arr = [ 5 , 9 , 7 , 19 ] # Length of subsequence k = 3 ; n = len (arr) # Function call print (maximumOR(arr, n, k)) # This code is contributed by sanjoy_62 |
C#
// C# program for the above approach using System; class GFG{ // Function to convert bit array to // decimal number static int build_num( int []bit) { int ans = 0; for ( int i = 0; i < 32; i++) if (bit[i] == 1) ans += (1 << i); ans += 32; // Return the final result return ans; } // Function to find the maximum Bitwise // OR value of subsequence of length K static int maximumOR( int []arr, int n, int k) { // Initialize bit array of // size 32 with all value as 0 int []bit = new int [32]; // Iterate for each index of bit[] // array from 31 to 0, and check if // the ith value of bit array is 0 for ( int i = 31; i >= 0; i--) { if (bit[i] == 0 && k > 0) { int temp = build_num(bit); int temp1 = temp; int val = -1; for ( int j = 0; j < n; j++) { // Check for maximum // contributing element if (temp1 < (temp | arr[j])) { temp1 = temp | arr[j]; val = arr[j]; } } // Update the bit array // if max_contributing // element is found if (val != -1) { // Decrement the value of K k--; for ( int j = 0; j < 32; j++) { bit[j]++; } } } } // Return the result return build_num(bit); } // Driver Code public static void Main() { // Given array arr[] int []arr = { 5, 9, 7, 19 }; // Length of subsequence int k = 3; int n = arr.Length; // Function call Console.Write(maximumOR(arr, n, k)); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript program for the above approach // Function to convert bit array to // decimal number function build_num(bit) { let ans = 0; for (let i = 0; i < 32; i++) if (bit[i] > 0) ans += (1 << i); // Return the final result return ans; } // Function to find the maximum Bitwise // OR value of subsequence of length K function maximumOR(arr, n, k) { // Initialize bit array of // size 32 with all value as 0 let bit = new Array(32); bit.fill(0); // Iterate for each index of bit[] // array from 31 to 0, and check if // the ith value of bit array is 0 for (let i = 31; i >= 0; i--) { if (bit[i] == 0 && k > 0) { let temp = build_num(bit); let temp1 = temp; let val = -1; for (let j = 0; j < n; j++) { // Check for maximum // contributing element if (temp1 < (temp | arr[j])) { temp1 = temp | arr[j]; val = arr[j]; } } // Update the bit array // if max_contributing // element is found if (val != -1) { // Decrement the value of K k--; for (let j = 0; j < 32; j++) { if ((val & (1 << j)) > 0) bit[j]++; } } } } // Return the result return build_num(bit); } // Driver code // Given array arr[] let arr = [ 5, 9, 7, 19 ]; // Length of subsequence let k = 3; let n = arr.length; // Function Call document.write(maximumOR(arr, n, k)); // This code is contributed by divyeshrabadiya07 </script> |
31
Time Complexity: O(N*log N)
Auxiliary Space: O(1)
Similar article: Maximum Bitwise AND value of subsequence of length K
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!