Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIMaximizing the elements with a > a

Maximizing the elements with a[i+1] > a[i]

Given an array of N integers, rearrange the array elements such that the next array element is greater than the previous element (A_{(i+1)}     A_i     ). 

Examples:

Input : arr[] = {20, 30, 10, 50, 40} 
Output :
We rearrange the array as 10, 20, 30, 40, 50. As 20 > 10, 30 > 20, 40 > 30, 50 > 40, so we get 4 indices i such that A_{(i+1)}     A_i

Input : arr[] = {200, 100, 100, 200} 
Output :
We get optimal arrangement as 100 200 100 200.

If all elements are distinct, then the answer is simply n-1 where n is the number of elements in the array. If there are repeating elements, then answer is n – max_freq.

Implementation:

C++




#include<bits/stdc++.h>
using namespace std;
 
// returns the number of positions where A(i + 1) is
// greater than A(i) after rearrangement of the array
int countMaxPos(int arr[], int n)
{
 
    // Creating a HashMap containing char
    // as a key and occurrences as a value
    unordered_map<int, int> map;
     
    for (int i = 0; i < n; i++ ) {
        if (map.count(arr[i]))
            map.insert({arr[i], (map.count(arr[i]) + 1)});
        else
            map.insert({arr[i], 1});
    }
     
    // Find the maximum frequency
    int max_freq = 0;
 
    for (auto i : map) {
        if (max_freq < i.second)
        {
            max_freq = i.second;
        }
    }
    return n - max_freq;
}
 
// Driver code
int main()
{
    int arr[] = { 20, 30, 10, 50, 40 };
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << (countMaxPos(arr, n));
}
 
// This code is contributed by Rajput-Ji


Java




import java.util.*;
 
class GFG {
 
    // returns the number of positions where A(i + 1) is
    // greater than A(i) after rearrangement of the array
    static int countMaxPos(int[] arr)
    {
        int n = arr.length;
 
        // Creating a HashMap containing char
        // as a key and occurrences as  a value
        HashMap<Integer, Integer> map
            = new HashMap<Integer, Integer>();
        for (int x : arr) {
            if (map.containsKey(x))
                map.put(x, map.get(x) + 1);
            else
                map.put(x, 1);
        }
 
        // Find the maximum frequency
        int max_freq = 0;
        for (Map.Entry entry : map.entrySet())
            max_freq = Math.max(max_freq, (int)entry.getValue());
 
        return n - max_freq;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 20, 30, 10, 50, 40 };
        System.out.println(countMaxPos(arr));
    }
}


Python3




# Python3 implementation of the above approach
 
# Returns the number of positions where
# A(i + 1) is greater than A(i) after
# rearrangement of the array
def countMaxPos(arr):
     
    n = len(arr)
 
    # Creating a HashMap containing char
    # as a key and occurrences as a value
    Map = {}
    for x in arr:
        if x in Map:
            Map[x] += 1
        else:
            Map[x] = 1
         
    # Find the maximum frequency
    max_freq = 0
    for entry in Map:
        max_freq = max(max_freq, Map[entry])
 
    return n - max_freq
 
# Driver code
if __name__ == "__main__":
     
    arr = [20, 30, 10, 50, 40]
    print(countMaxPos(arr))
     
# This code is contributed by Rituraj Jain


C#




// C# implementation of the approach
using System;
using System.Collections.Generic;            
 
class GFG
{
 
    // returns the number of positions where
    // A(i + 1) is greater than A(i) after
    // rearrangement of the array
    static int countMaxPos(int[] arr)
    {
        int n = arr.Length;
 
        // Creating a HashMap containing char
        // as a key and occurrences as a value
        Dictionary<int,
                   int> map = new Dictionary<int,
                                             int>();
        foreach (int x in arr)
        {
            if (map.ContainsKey(x))
                map[x] = map[x] + 1;
            else
                map.Add(x, 1);
        }
 
        // Find the maximum frequency
        int max_freq = 0;
        foreach(KeyValuePair<int, int> entry in map)
            max_freq = Math.Max(max_freq, entry.Value);
 
        return n - max_freq;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int[] arr = { 20, 30, 10, 50, 40 };
        Console.WriteLine(countMaxPos(arr));
    }
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
// Javascript implementation of the approach
 
// returns the number of positions where
// A(i + 1) is greater than A(i) after
// rearrangement of the array
function countMaxPos(arr) {
    let n = arr.length;
 
    // Creating a HashMap containing char
    // as a key and occurrences as a value
    let map = new Map();
 
    for (let x of arr) {
        if (map.has(x))
            map.set(x, map.get(x) + 1);
        else
            map.set(x, 1);
    }
 
    // Find the maximum frequency
    let max_freq = 0;
 
    for (let entry of map)
        max_freq = Math.max(max_freq, entry[1]);
 
    console.log(max_freq, n)
    return n - max_freq;
}
 
// Driver code
 
let arr = [20, 30, 10, 50, 40];
document.write(countMaxPos(arr));
 
 
 
// This code is contributed by _saurabh_jaiswal
</script>


Output

4

complexity Analysis:

  • Time Complexity: O(n)
  • Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments