Given an integer N, the task is to construct a tree such that the sum of for all ordered pairs (u, v) is the maximum where u != v. Print the maximum possible sum.
Examples:
Input: N = 4 Output: 26 1 / 2 / 3 / 4 For node 1, 1*2 + 1*2 + 1*1 = 5 For node 2, 2*1 + 2*2 + 2*1 = 8 For node 3, 2*1 + 2*2 + 2*1 = 8 For node 4, 1*1 + 1*2 + 1*2 = 5 Total sum = 5 + 8 + 8 + 5 = 26 Input: N = 6 Output: 82
Approach: We know that sum of the degree of all nodes in a tree is (2 * N) – 2 where N is the number of nodes in the tree. As we have to maximize the sum, we have to minimize the number of leaf nodes, as the leaf nodes have the minimum degree among all the nodes of the tree and the tree will be of the form:
1 / 2 / ... / N
where only the root and the only leaf node will have a degree of 1 and all the other nodes will have degree 2.
Below is the implementation of the above approach:
C++
// C++ implementation of above approach #include <bits/stdc++.h> using namespace std; #define ll long long int // Function to return the maximum possible sum ll maxSum( int N) { ll ans = 0; for ( int u = 1; u <= N; u++) { for ( int v = 1; v <= N; v++) { if (u == v) continue ; // Initialize degree for node u to 2 int degreeU = 2; // If u is the leaf node or the root node if (u == 1 || u == N) degreeU = 1; // Initialize degree for node v to 2 int degreeV = 2; // If v is the leaf node or the root node if (v == 1 || v == N) degreeV = 1; // Update the sum ans += (degreeU * degreeV); } } return ans; } // Driver code int main() { int N = 6; cout << maxSum(N); } |
Java
// Java implementation of above approach class GFG { // Function to return the maximum possible sum static int maxSum( int N) { int ans = 0 ; for ( int u = 1 ; u <= N; u++) { for ( int v = 1 ; v <= N; v++) { if (u == v) continue ; // Initialize degree for node u to 2 int degreeU = 2 ; // If u is the leaf node or the root node if (u == 1 || u == N) degreeU = 1 ; // Initialize degree for node v to 2 int degreeV = 2 ; // If v is the leaf node or the root node if (v == 1 || v == N) degreeV = 1 ; // Update the sum ans += (degreeU * degreeV); } } return ans; } // Driver code public static void main(String[] args) { int N = 6 ; System.out.println(maxSum(N)); } } // This code is contributed by Code_Mech |
Python3
# Python3 implementation of above approach # Function to return the maximum possible sum def maxSum(N) : ans = 0 ; for u in range ( 1 , N + 1 ) : for v in range ( 1 , N + 1 ) : if (u = = v) : continue ; # Initialize degree for node u to 2 degreeU = 2 ; # If u is the leaf node or the root node if (u = = 1 or u = = N) : degreeU = 1 ; # Initialize degree for node v to 2 degreeV = 2 ; # If v is the leaf node or the root node if (v = = 1 or v = = N) : degreeV = 1 ; # Update the sum ans + = (degreeU * degreeV); return ans; # Driver code if __name__ = = "__main__" : N = 6 ; print (maxSum(N)); # This code is contributed by Ryuga |
C#
// C# implementation of above approach using System; class GFG { // Function to return the maximum possible sum static int maxSum( int N) { int ans = 0; for ( int u = 1; u <= N; u++) { for ( int v = 1; v <= N; v++) { if (u == v) continue ; // Initialize degree for node u to 2 int degreeU = 2; // If u is the leaf node or the root node if (u == 1 || u == N) degreeU = 1; // Initialize degree for node v to 2 int degreeV = 2; // If v is the leaf node or the root node if (v == 1 || v == N) degreeV = 1; // Update the sum ans += (degreeU * degreeV); } } return ans; } // Driver code static void Main() { int N = 6; Console.WriteLine(maxSum(N)); } } // This code is contributed by Chandan_jnu |
PHP
<?php // PHP implementation of above approach // Function to return the maximum // possible sum function maxSum( $N ) { $ans = 0; for ( $u = 1; $u <= $N ; $u ++) { for ( $v = 1; $v <= $N ; $v ++) { if ( $u == $v ) continue ; // Initialize degree for node u to 2 $degreeU = 2; // If u is the leaf node or the // root node if ( $u == 1 || $u == $N ) $degreeU = 1; // Initialize degree for node v to 2 $degreeV = 2; // If v is the leaf node or the // root node if ( $v == 1 || $v == $N ) $degreeV = 1; // Update the sum $ans += ( $degreeU * $degreeV ); } } return $ans ; } // Driver code $N = 6; echo maxSum( $N ); // This code is contributed // by Akanksha Rai ?> |
Javascript
<script> // Javascript implementation of above approach // Function to return the maximum possible sum function maxSum(N) { var ans = 0; for ( var u = 1; u <= N; u++) { for ( var v = 1; v <= N; v++) { if (u == v) continue ; // Initialize degree for node u to 2 var degreeU = 2; // If u is the leaf node or the root node if (u == 1 || u == N) degreeU = 1; // Initialize degree for node v to 2 var degreeV = 2; // If v is the leaf node or the root node if (v == 1 || v == N) degreeV = 1; // Update the sum ans += (degreeU * degreeV); } } return ans; } // Driver code var N = 6; document.write( maxSum(N)); </script> |
82
Complexity Analysis:
- Time Complexity: O(N2)
- Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!