Thursday, January 9, 2025
Google search engine
HomeData Modelling & AIMaximize the profit by selling at-most M products

Maximize the profit by selling at-most M products

Given two lists that contain cost prices CP[] and selling prices SP[] of products respectively. The task is to maximize the profit by selling at-most ‘M’ products. 

Examples: 

Input: N = 5, M = 3 
CP[]= {5, 10, 35, 7, 23} 
SP[] = {11, 10, 0, 9, 19} 
Output:
Profit on 0th product i.e. 11-5 = 6 
Profit on 3rd product i.e. 9-7 = 2 
Selling any other product will not give profit. 
So, total profit = 6+2 = 8.

Input: N = 4, M = 2 
CP[] = {17, 9, 8, 20} 
SP[] = {10, 9, 8, 27} 
Output:

Approach:  

  1. Store the profit/loss on buying and selling of each product i.e. SP[i]-CP[i] in an array.
  2. Sort that array in descending order.
  3. Add the positive values up to M values as positive values denote profit.
  4. Return Sum.

Below is the implementation of above approach:  

C++




// C++ implementation of above approach:
#include <bits/stdc++.h>
using namespace std;
 
// Function to find profit
int solve(int N, int M, int cp[], int sp[])
{
    int profit[N];
 
    // Calculating profit for each gadget
    for (int i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
 
    // sort the profit array in descending order
    sort(profit, profit + N, greater<int>());
 
    // variable to calculate total profit
    int sum = 0;
 
    // check for best M profits
    for (int i = 0; i < M; i++) {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
 
    return sum;
}
 
// Driver Code
int main()
{
 
    int N = 5, M = 3;
    int CP[] = { 5, 10, 35, 7, 23 };
    int SP[] = { 11, 10, 0, 9, 19 };
 
    cout << solve(N, M, CP, SP);
 
    return 0;
}


Java




// Java implementation of above approach:
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
 
// Function to find profit
static int solve(int N, int M,
                 int cp[], int sp[])
{
    Integer []profit = new Integer[N];
 
    // Calculating profit for each gadget
    for (int i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
 
    // sort the profit array
    // in descending order
    Arrays.sort(profit, Collections.reverseOrder());
 
    // variable to calculate total profit
    int sum = 0;
 
    // check for best M profits
    for (int i = 0; i < M; i++)
    {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
 
    return sum;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 5, M = 3;
    int CP[] = { 5, 10, 35, 7, 23 };
    int SP[] = { 11, 10, 0, 9, 19 };
 
    System.out.println(solve(N, M, CP, SP));
}
}
 
// This code is contributed
// by Subhadeep Gupta


Python3




# Python3 implementation
# of above approach
 
# Function to find profit
def solve(N, M, cp, sp) :
     
    # take empty list
    profit = []
     
    # Calculating profit
    # for each gadget
    for i in range(N) :
        profit.append(sp[i] - cp[i])
 
    # sort the profit array
    # in descending order
    profit.sort(reverse = True)
 
    sum = 0
     
    # check for best M profits
    for i in range(M) :
        if profit[i] > 0 :
            sum += profit[i]
        else :
            break
 
    return sum
 
# Driver Code
if __name__ == "__main__" :
 
    N, M = 5, 3
    CP = [5, 10, 35, 7, 23]
    SP = [11, 10, 0, 9, 19]
     
    # function calling
    print(solve(N, M, CP, SP))
     
# This code is contributed
# by ANKITRAI1


C#




// C# implementation of above approach:
using System;
 
class GFG
{
 
// Function to find profit
static int solve(int N, int M,
                 int[] cp, int[] sp)
{
    int[] profit = new int[N];
 
    // Calculating profit for each gadget
    for (int i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
 
    // sort the profit array
    // in descending order
    Array.Sort(profit);
    Array.Reverse(profit);
 
    // variable to calculate total profit
    int sum = 0;
 
    // check for best M profits
    for (int i = 0; i < M; i++)
    {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
 
    return sum;
}
 
// Driver Code
public static void Main()
{
    int N = 5, M = 3;
    int[] CP = { 5, 10, 35, 7, 23 };
    int[] SP = { 11, 10, 0, 9, 19 };
 
    Console.Write(solve(N, M, CP, SP));
}
}
 
// This code is contributed
// by ChitraNayal


PHP




<?php
// PHP implementation of above approach:
 
// Function to find profit
function solve($N, $M, &$cp, &$sp)
{
    $profit = array_fill(0, $N, NULL);
 
    // Calculating profit for each gadget
    for ($i = 0; $i < $N; $i++)
        $profit[$i] = $sp[$i] - $cp[$i];
 
    // sort the profit array
    // in descending order
    rsort($profit);
 
    // variable to calculate
    // total profit
    $sum = 0;
 
    // check for best M profits
    for ($i = 0; $i < $M; $i++)
    {
        if ($profit[$i] > 0)
            $sum += $profit[$i];
        else
            break;
    }
 
    return $sum;
}
 
// Driver Code
$N = 5;
$M = 3;
$CP = array( 5, 10, 35, 7, 23 );
$SP = array( 11, 10, 0, 9, 19 );
 
echo solve($N, $M, $CP, $SP);
 
// This code is contributed
// by ChitraNayal
?>


Javascript




<script>
 
// Javascript implementation of above approach:
     
// Function to find profit
function solve(N, M, cp, sp)
{
    let profit = new Array(N);
     
    // Calculating profit for each gadget
    for(let i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
     
    // Sort the profit array
    // in descending order
    profit.sort(function(a, b){return b - a;});
     
    // Variable to calculate total profit
    let sum = 0;
     
    // Check for best M profits
    for(let i = 0; i < M; i++)
    {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
    return sum;
}
 
// Driver Code
let N = 5, M = 3;
let CP = [ 5, 10, 35, 7, 23 ];
let SP = [ 11, 10, 0, 9, 19 ];
 
document.write(solve(N, M, CP, SP));
 
// This code is contributed by rag2127
 
</script>


Output

8

Complexity Analysis:

  • Time Complexity: O(n*log(n)+m)
  • Auxiliary Space: O(n)
Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments