Given a binary matrix of R rows and C columns. We are allowed to flip to any size of sub matrix. Flipping means changing 1 to 0 and 0 to 1. The task is to maximize the number of 1s in the matrix. Output the maximum number of 1s.
Examples:
Input : R = 3, C =3 mat[][] = { 0, 0, 1, 0, 0, 1, 1, 0, 1 } Output : 8 Flip 0 0 1 0 0 1 1 0 1 to get 1 1 1 1 1 1 0 1 1 Input : R = 2, C = 3 mat[][] = { 0, 0, 0, 0, 0, 0 } Output : 6
Create a matrix ones[][] of R rows and C columns, which precomputes the number of ones in the submatrix from (0, 0) to (i, j) by
// Common elements in ones[i-1][j] and // ones[i][j-1] are ones[i-1][j-1] ones[i][j] = ones[i-1][j] + ones[i][j-1] - ones[i-1][j-1] + (mat[i][j] == 1)
Since, we are allowed to flip sub matrix only once. We iterate over all possible submatrix of all possible sizes for each cell (i, j) to (i + k – 1, i + k – 1). We calculate the total number of ones after the digits are filliped in the chosen submatrix.
Total number of ones in the final matrix after flipping submatrix (i, j) to (i + k – 1) will be Ones in the whole matrix – Ones in the chosen submatrix + Zeroes in the chosen sub matrix. That comes out to be :-
ones[R][C] - cal(i, j, i + k-1, j + k - 1) + k*k - cal(i, j, i + k - 1, j + k - 1) where cal(a, b, c, d) denotes the number of ones in square submatrix of length c - a. Now cal(x1, y1, x2, y2) can be define by: ones[x2][y2] - ones[x2][y1 - 1] - ones[x1 - 1][y2] + ones[x1 - 1][y1 - 1].
Below is the implementation of this approach:
C++
// C++ program to find maximum number of ones after // one flipping in Binary Matrix #include <bits/stdc++.h> #define R 3 #define C 3 using namespace std; // Return number of ones in square submatrix of size // k x k starting from (x, y) int cal( int ones[R + 1][C + 1], int x, int y, int k) { return ones[x + k - 1][y + k - 1] - ones[x - 1][y + k - 1] - ones[x + k - 1][y - 1] + ones[x - 1][y - 1]; } // Return maximum number of 1s after flipping a submatrix int sol( int mat[R][C]) { int ans = 0; // Precomputing the number of 1s int ones[R + 1][C + 1] = {0}; for ( int i = 1; i <= R; i++) for ( int j = 1; j <= C; j++) ones[i][j] = ones[i - 1][j] + ones[i][j - 1] - ones[i - 1][j - 1] + (mat[i - 1][j - 1] == 1); // Finding the maximum number of 1s after flipping for ( int k = 1; k <= min(R, C); k++) for ( int i = 1; i + k - 1 <= R; i++) for ( int j = 1; j + k - 1 <= C; j++) ans = max(ans, (ones[R][C] + k * k - 2 * cal(ones, i, j, k))); return ans; } // Driver code int main() { int mat[R][C] = {{0, 0, 1}, { 0, 0, 1}, { 1, 0, 1 } }; cout << sol(mat) << endl; return 0; } |
Java
// Java program to find maximum number of ones after // one flipping in Binary Matrix class GFG { static final int R = 3 ; static final int C = 3 ; // Return number of ones in square submatrix of size // k x k starting from (x, y) static int cal( int ones[][], int x, int y, int k) { return ones[x + k - 1 ][y + k - 1 ] - ones[x - 1 ][y + k - 1 ] - ones[x + k - 1 ][y - 1 ] + ones[x - 1 ][y - 1 ]; } // Return maximum number of 1s after flipping a submatrix static int sol( int mat[][]) { int ans = 0 ; int val = 0 ; // Precomputing the number of 1s int ones[][] = new int [R + 1 ][C + 1 ]; for ( int i = 1 ; i <= R; i++) for ( int j = 1 ; j <= C; j++) { if (mat[i - 1 ][j - 1 ] == 1 ) val= 1 ; ones[i][j] = ones[i - 1 ][j] + ones[i][j - 1 ] - ones[i - 1 ][j - 1 ] + (val); } // Finding the maximum number of 1s after flipping for ( int k = 1 ; k <= Math.min(R, C); k++) for ( int i = 1 ; i + k - 1 <= R; i++) for ( int j = 1 ; j + k - 1 <= C; j++) ans = Math.max(ans, (ones[R][C] + k * k - 2 * cal(ones, i, j, k))); return ans; } // Driver code static public void main(String[] args) { int mat[][] = {{ 0 , 0 , 1 }, { 0 , 0 , 1 }, { 1 , 0 , 1 } }; System.out.println(sol(mat)); } } // This code is contributed by Rajput-Ji |
Python3
# Python 3 program to find maximum number of # ones after one flipping in Binary Matrix R = 3 C = 3 # Return number of ones in square submatrix # of size k x k starting from (x, y) def cal(ones, x, y, k): return (ones[x + k - 1 ][y + k - 1 ] - ones[x - 1 ][y + k - 1 ] - ones[x + k - 1 ][y - 1 ] + ones[x - 1 ][y - 1 ]) # Return maximum number of 1s after # flipping a submatrix def sol(mat): ans = 0 # Precomputing the number of 1s ones = [[ 0 for i in range (C + 1 )] for i in range (R + 1 )] for i in range ( 1 , R + 1 , 1 ): for j in range ( 1 , C + 1 , 1 ): ones[i][j] = (ones[i - 1 ][j] + ones[i][j - 1 ] - ones[i - 1 ][j - 1 ] + (mat[i - 1 ][j - 1 ] = = 1 )) # Finding the maximum number of 1s # after flipping for k in range ( 1 , min (R, C) + 1 , 1 ): for i in range ( 1 , R - k + 2 , 1 ): for j in range ( 1 , C - k + 2 , 1 ): ans = max (ans, (ones[R][C] + k * k - 2 * cal(ones, i, j, k))) return ans # Driver code if __name__ = = '__main__' : mat = [[ 0 , 0 , 1 ], [ 0 , 0 , 1 ], [ 1 , 0 , 1 ]] print (sol(mat)) # This code is contributed by # Sahil_Shelangia |
C#
// C# program to find maximum number of ones after // one flipping in Binary Matrix using System; public class GFG { static readonly int R = 3; static readonly int C = 3 ; // Return number of ones in square submatrix of size // k x k starting from (x, y) static int cal( int [,]ones, int x, int y, int k) { return ones[x + k - 1,y + k - 1] - ones[x - 1,y + k - 1] - ones[x + k - 1,y - 1] + ones[x - 1,y - 1]; } // Return maximum number of 1s after flipping a submatrix static int sol( int [,]mat) { int ans = 0; int val =0; // Precomputing the number of 1s int [,]ones = new int [R + 1,C + 1]; for ( int i = 1; i <= R; i++) for ( int j = 1; j <= C; j++) { if (mat[i - 1,j - 1] == 1) val=1; ones[i,j] = ones[i - 1,j] + ones[i,j - 1] - ones[i - 1,j - 1] + (val); } // Finding the maximum number of 1s after flipping for ( int k = 1; k <= Math.Min(R, C); k++) for ( int i = 1; i + k - 1 <= R; i++) for ( int j = 1; j + k - 1 <= C; j++) ans = Math.Max(ans, (ones[R,C] + k * k - 2 * cal(ones, i, j, k))); return ans; } // Driver code static public void Main() { int [,]mat = {{0, 0, 1}, { 0, 0, 1}, { 1, 0, 1 } }; Console.WriteLine(sol(mat)); } } // This code is contributed by 29AjayKumar |
PHP
<?php // PHP program to find maximum number of ones after // one flipping in Binary Matrix $R = 3; $C = 3; // Return number of ones in square submatrix of size // k x k starting from (x, y) function cal( $ones , $x , $y , $k ) { return $ones [ $x + $k - 1][ $y + $k - 1] - $ones [ $x - 1][ $y + $k - 1] - $ones [ $x + $k - 1][ $y - 1] + $ones [ $x - 1][ $y - 1]; } // Return maximum number of 1s after flipping a submatrix function sol( $mat ) { global $C , $R ; $ans = 0; // Precomputing the number of 1s $ones = array_fill (0, $R + 1, array_fill (0, $C + 1,0)); for ( $i = 1; $i <= $R ; $i ++) for ( $j = 1; $j <= $C ; $j ++) $ones [ $i ][ $j ] = $ones [ $i - 1][ $j ] + $ones [ $i ][ $j - 1] - $ones [ $i - 1][ $j - 1] + (int)( $mat [ $i - 1][ $j - 1] == 1); // Finding the maximum number of 1s after flipping for ( $k = 1; $k <= min( $R , $C ); $k ++) for ( $i = 1; $i + $k - 1 <= $R ; $i ++) for ( $j = 1; $j + $k - 1 <= $C ; $j ++) $ans = max( $ans , ( $ones [ $R ][ $C ] + $k * $k - 2 * cal( $ones , $i , $j , $k ))); return $ans ; } // Driver code $mat = array ( array (0, 0, 1), array ( 0, 0, 1), array ( 1, 0, 1 )); echo sol( $mat ); // This code is contributed by mits ?> |
Javascript
<script> // Javascript program to find maximum number of ones after // one flipping in Binary Matrix let R = 3; let C = 3 ; // Return number of ones in square submatrix of size // k x k starting from (x, y) function cal(ones, x, y, k) { return ones[x + k - 1][y + k - 1] - ones[x - 1][y + k - 1] - ones[x + k - 1][y - 1] + ones[x - 1][y - 1]; } // Return maximum number of 1s after flipping a submatrix function sol(mat) { let ans = 0; let val =0; // Precomputing the number of 1s let ones = new Array(R + 1); // Loop to create 2D array using 1D array for ( var i = 0; i < ones.length; i++) { ones[i] = new Array(2); } for ( var i = 0; i < ones.length; i++) { for ( var j = 0; j < ones.length; j++) { ones[i][j] = 0; } } for (let i = 1; i <= R; i++) for (let j = 1; j <= C; j++) { if (mat[i - 1][j - 1] == 1) val=1; ones[i][j] = ones[i - 1][j] + ones[i][j - 1] - ones[i - 1][j - 1] + (val); } // Finding the maximum number of 1s after flipping for (let k = 1; k <= Math.min(R, C); k++) for (let i = 1; i + k - 1 <= R; i++) for (let j = 1; j + k - 1 <= C; j++) ans = Math.max(ans, (ones[R][C] + k * k - 2 * cal(ones, i, j, k))); return ans; } // driver function let mat = [[0, 0, 1], [ 0, 0, 1], [ 1, 0, 1 ] ]; document.write(sol(mat)); // This code is contributed by susmitakundugoaldanga. </script> |
8
Time Complexity: O(R*C*min(R, C))
Auxiliary Space: O(R*C) because extra space for array ones is being used
This article is contributed by Anuj Chauhan. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!