Given two arrays A[] and B[] each of size N, the task is to find the maximum sum that can be obtained based on the following conditions:
- Both A[i] and B[i] cannot be included in the sum ( 0 ? i ? N – 1 ).
- If B[i] is added to the sum, then B[i – 1] and A[i – 1] cannot be included in the sum ( 0 ? i ? N – 1 ).
Examples:
Input: A[] = {10, 20, 5}, B[] = {5, 5, 45}
Output: 55
Explanation: The optimal way to maximize the sum is by including A[0] (= 10) and B[2] (= 45) in the sum. Therefore, sum = 10 + 45 = 55.Input: A[] = {10, 1, 10, 10}, B[] = {5, 50, 1, 5}
Output: 70
Approach: This problem has Optimal substructure and Overlapping subproblems. Therefore, Dynamic Programming can be used to solve the problem.
Follow the steps below to solve the problem:
- Initialize a array, say dp[n][2], where dp[i][0] stores the maximum sum if element A[i] is taken into consideration and dp[i][1] stores the maximum sum if B[i] is taken into consideration.
- Iterate in the range [0, N – 1] using a variable, say i, and perform the following steps:
- If i is equal to 0, then modify the value of dp[i][0] as A[i] and dp[i][1] as B[i].
- Otherwise, perform the following operations:
- Modify the value of dp[i][0] as max(dp[i – 1][0], dp[i – 1][1]) + A[i].
- Modify the value of dp[i][1] as max(dp[i – 1], max(dp[i – 1][0], max(dp[i – 2][0], dp[i – 2][1]) + B[i])).
- After completing the above steps, print the max(dp[N-1][0], dp[N-1][1]) as the answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum sum // that can be obtained from two given // based on the following conditions int MaximumSum( int a[], int b[], int n) { // Stores the maximum // sum from 0 to i int dp[n][2]; // Initialize the value of // dp[0][0] and dp[0][1] dp[0][0] = a[0]; dp[0][1] = b[0]; // Traverse the array A[] and B[] for ( int i = 1; i < n; i++) { // If A[i] is considered dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]) + a[i]; // If B[i] is not considered dp[i][1] = max(dp[i - 1][0], dp[i - 1][1]); // If B[i] is considered if (i - 2 >= 0) { dp[i][1] = max(dp[i][1], max(dp[i - 2][0], dp[i - 2][1]) + b[i]); } else { // If i = 1, then consider the // value of dp[i][1] as b[i] dp[i][1] = max(dp[i][1], b[i]); } } // Return maximum Sum return max(dp[n - 1][0], dp[n - 1][1]); } // Driver Code int main() { // Given Input int A[] = { 10, 1, 10, 10 }; int B[] = { 5, 50, 1, 5 }; int N = sizeof (A) / sizeof (A[0]); // Function Call cout << MaximumSum(A, B, N); return 0; } |
Java
// Java program for the above approach class GFG { // Function to find the maximum sum // that can be obtained from two given // based on the following conditions public static int MaximumSum( int a[], int b[], int n) { // Stores the maximum // sum from 0 to i int [][] dp = new int [n][ 2 ]; // Initialize the value of // dp[0][0] and dp[0][1] dp[ 0 ][ 0 ] = a[ 0 ]; dp[ 0 ][ 1 ] = b[ 0 ]; // Traverse the array A[] and B[] for ( int i = 1 ; i < n; i++) { // If A[i] is considered dp[i][ 0 ] = Math.max(dp[i - 1 ][ 0 ], dp[i - 1 ][ 1 ]) + a[i]; // If B[i] is not considered dp[i][ 1 ] = Math.max(dp[i - 1 ][ 0 ], dp[i - 1 ][ 1 ]); // If B[i] is considered if (i - 2 >= 0 ) { dp[i][ 1 ] = Math.max(dp[i][ 1 ], Math.max(dp[i - 2 ][ 0 ], dp[i - 2 ][ 1 ]) + b[i]); } else { // If i = 1, then consider the // value of dp[i][1] as b[i] dp[i][ 1 ] = Math.max(dp[i][ 1 ], b[i]); } } // Return maximum Sum return Math.max(dp[n - 1 ][ 0 ], dp[n - 1 ][ 1 ]); } // Driver Code public static void main(String args[]) { // Given Input int A[] = { 10 , 1 , 10 , 10 }; int B[] = { 5 , 50 , 1 , 5 }; int N = A.length; // Function Call System.out.println(MaximumSum(A, B, N)); } } // This code is contributed by _saurabh_jaiswal. |
Python3
# Python3 program for the above approach # Function to find the maximum sum # that can be obtained from two given # arrays based on the following conditions def MaximumSum(a, b, n): # Stores the maximum # sum from 0 to i dp = [[ - 1 for j in range ( 2 )] for i in range (n)] # Initialize the value of # dp[0][0] and dp[0][1] dp[ 0 ][ 0 ] = a[ 0 ] dp[ 0 ][ 1 ] = b[ 0 ] # Traverse the array A[] and B[] for i in range ( 1 , n): # If A[i] is considered dp[i][ 0 ] = max (dp[i - 1 ][ 0 ], dp[i - 1 ][ 1 ]) + a[i] # If B[i] is not considered dp[i][ 1 ] = max (dp[i - 1 ][ 0 ], dp[i - 1 ][ 1 ]) # If B[i] is considered if (i - 2 > = 0 ): dp[i][ 1 ] = max (dp[i][ 1 ], max (dp[i - 2 ][ 0 ], dp[i - 2 ][ 1 ]) + b[i]) else : # If i = 1, then consider the # value of dp[i][1] as b[i] dp[i][ 1 ] = max (dp[i][ 1 ], b[i]) # Return maximum sum return max (dp[n - 1 ][ 0 ], dp[n - 1 ][ 1 ]) # Driver code if __name__ = = '__main__' : # Given input A = [ 10 , 1 , 10 , 10 ] B = [ 5 , 50 , 1 , 5 ] N = len (A) # Function call print (MaximumSum(A, B, N)) # This code is contributed by MuskanKalra1 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to find the maximum sum // that can be obtained from two given // based on the following conditions static int MaximumSum( int []a, int []b, int n) { // Stores the maximum // sum from 0 to i int [,]dp = new int [n,2]; // Initialize the value of // dp[0][0] and dp[0][1] dp[0,0] = a[0]; dp[0,1] = b[0]; // Traverse the array A[] and B[] for ( int i = 1; i < n; i++) { // If A[i] is considered dp[i,0] = Math.Max(dp[i - 1,0], dp[i - 1,1]) + a[i]; // If B[i] is not considered dp[i,1] = Math.Max(dp[i - 1,0], dp[i - 1,1]); // If B[i] is considered if (i - 2 >= 0) { dp[i,1] = Math.Max(dp[i,1], Math.Max(dp[i - 2,0], dp[i - 2,1]) + b[i]); } else { // If i = 1, then consider the // value of dp[i][1] as b[i] dp[i,1] = Math.Max(dp[i,1], b[i]); } } // Return maximum Sum return Math.Max(dp[n - 1,0], dp[n - 1,1]); } // Driver Code public static void Main() { // Given Input int []A = { 10, 1, 10, 10 }; int []B = { 5, 50, 1, 5 }; int N = A.Length; // Function Call Console.Write(MaximumSum(A, B, N)); } } // This code is contributed by ipg2016107. |
Javascript
<script> // Javascript program for the above approach // Function to find the maximum sum // that can be obtained from two given // based on the following conditions function MaximumSum(a, b, n) { // Stores the maximum // sum from 0 to i let dp = new Array(n).fill(0).map( () => new Array(2)); // Initialize the value of // dp[0][0] and dp[0][1] dp[0][0] = a[0]; dp[0][1] = b[0]; // Traverse the array A[] and B[] for (let i = 1; i < n; i++) { // If A[i] is considered dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1]) + a[i]; // If B[i] is not considered dp[i][1] = Math.max(dp[i - 1][0], dp[i - 1][1]); // If B[i] is considered if (i - 2 >= 0) { dp[i][1] = Math.max(dp[i][1], Math.max(dp[i - 2][0], dp[i - 2][1]) + b[i]); } else { // If i = 1, then consider the // value of dp[i][1] as b[i] dp[i][1] = Math.max(dp[i][1], b[i]); } } // Return maximum Sum return Math.max(dp[n - 1][0], dp[n - 1][1]); } // Driver Code // Given Input let A = [ 10, 1, 10, 10 ]; let B = [ 5, 50, 1, 5 ]; let N = A.length; // Function Call document.write(MaximumSum(A, B, N)); // This code is contributed by gfgking </script> |
70
Time Complexity: O(N)
Auxiliary Space: O(N)
Efficient Approach – Space optimization: In the previous approach, the current value dp[i] is only dependent upon the just previous values i.e., dp[i – 1]. So to optimize the space we can keep track of previous and current values with the help of variables prev_max_a, prev_max_b and curr_max_a, curr_max_b which will reduce the space complexity from O(N) to O(1). Below are the steps:
- Create variables prev_max_a and prev_max_b to keep track of previous values of DP.
- Initialize base case prev_max_a = a[0] , prev_max_b = b[0].
- Create a variable curr_max_a and curr_max_b to store the current value.
- Iterate over the subproblem using loop and update curr_max_a and curr_max_b and after every iteration, update prev_max_a and prev_max_b for further iterations.
- After the above steps, print the maximum of curr_max_a and curr_max_b.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum sum // that can be obtained from two given // based on the following conditions int MaximumSum( int a[], int b[], int n) { int prev_max_a = a[0], curr_max_a = 0; int prev_max_b = b[0], curr_max_b = 0; // Traverse the array A[] and B[] for ( int i = 1; i < n; i++) { // If A[i] is considered curr_max_a = max(prev_max_a, prev_max_b) + a[i]; // If B[i] is not considered curr_max_b = max(prev_max_a, prev_max_b); // If B[i] is considered if (i - 2 >= 0) { curr_max_b = max(curr_max_b, max(prev_max_a, prev_max_b) + b[i]); } // If i = 1, then consider the // value of dp[i][1] as b[i] else { curr_max_b = max(curr_max_b, b[i]); } // assigning values to iterate further prev_max_a = curr_max_a; prev_max_b = curr_max_b; } // Return maximum Sum return max(curr_max_a, curr_max_b); } // Driver Code int main() { // Given Input int A[] = { 10, 1, 10, 10 }; int B[] = { 5, 50, 1, 5 }; int N = sizeof (A) / sizeof (A[0]); // Function Call cout << MaximumSum(A, B, N); return 0; } // --- by bhardwajji |
Java
import java.util.*; public class MaximumSumTwoArrays { public static int maximumSum( int [] a, int [] b, int n) { int prevMaxA = a[ 0 ]; int currMaxA = 0 ; int prevMaxB = b[ 0 ]; int currMaxB = 0 ; for ( int i = 1 ; i < n; i++) { // If A[i] is considered currMaxA = Math.max(prevMaxA, prevMaxB) + a[i]; // If B[i] is not considered currMaxB = Math.max(prevMaxA, prevMaxB); // If B[i] is considered if (i - 2 >= 0 ) { currMaxB = Math.max(currMaxB, Math.max(prevMaxA, prevMaxB) + b[i]); } else { // If i = 1, then consider the value of b[i] currMaxB = Math.max(currMaxB, b[i]); } // Assigning values to iterate further prevMaxA = currMaxA; prevMaxB = currMaxB; } // Return maximum sum return Math.max(currMaxA, currMaxB); } public static void main(String[] args) { // Given Input int [] A = { 10 , 1 , 10 , 10 }; int [] B = { 5 , 50 , 1 , 5 }; int N = A.length; // Function Call System.out.println(maximumSum(A, B, N)); } } |
Python
# Python program for the above approach # Function to find the maximum sum # that can be obtained from two given # based on the following conditions def MaximumSum(a, b, n): prev_max_a = a[ 0 ] curr_max_a = 0 prev_max_b = b[ 0 ] curr_max_b = 0 # Traverse the array A[] and B[] for i in range ( 1 , n): # If A[i] is considered curr_max_a = max (prev_max_a, prev_max_b) + a[i] # If B[i] is not considered curr_max_b = max (prev_max_a, prev_max_b) # If B[i] is considered if i - 2 > = 0 : curr_max_b = max (curr_max_b, max (prev_max_a, prev_max_b) + b[i]) # If i = 1, then consider the # value of dp[i][1] as b[i] else : curr_max_b = max (curr_max_b, b[i]) # assigning values to iterate further prev_max_a = curr_max_a prev_max_b = curr_max_b # Return maximum Sum return max (curr_max_a, curr_max_b) # Driver Code if __name__ = = '__main__' : # Given Input A = [ 10 , 1 , 10 , 10 ] B = [ 5 , 50 , 1 , 5 ] N = len (A) # Function Call print (MaximumSum(A, B, N)) |
C#
using System; class Program { // Function to find the maximum sum // that can be obtained from two given // arrays based on the following conditions static int MaximumSum( int [] a, int [] b, int n) { int prevMaxA = a[0], currMaxA = 0; int prevMaxB = b[0], currMaxB = 0; // Traverse the arrays A[] and B[] for ( int i = 1; i < n; i++) { // If A[i] is considered currMaxA = Math.Max(prevMaxA, prevMaxB) + a[i]; // If B[i] is not considered currMaxB = Math.Max(prevMaxA, prevMaxB); // If B[i] is considered if (i - 2 >= 0) { currMaxB = Math.Max( currMaxB, Math.Max(prevMaxA, prevMaxB) + b[i]); } // If i = 1, then consider the // value of dp[i][1] as b[i] else { currMaxB = Math.Max(currMaxB, b[i]); } // Assigning values to iterate further prevMaxA = currMaxA; prevMaxB = currMaxB; } // Return maximum Sum return Math.Max(currMaxA, currMaxB); } // Driver Code static void Main() { // Given Input int [] A = { 10, 1, 10, 10 }; int [] B = { 5, 50, 1, 5 }; int N = A.Length; // Function Call Console.WriteLine(MaximumSum(A, B, N)); } } |
Javascript
// Function to find the maximum sum // that can be obtained from two given // based on the following conditions function MaximumSum(a, b, n) { let prev_max_a = a[0]; let curr_max_a = 0; let prev_max_b = b[0]; let curr_max_b = 0; // Traverse the array A[] and B[] for (let i = 1; i < n; i++) { // If A[i] is considered curr_max_a = Math.max(prev_max_a, prev_max_b) + a[i]; // If B[i] is not considered curr_max_b = Math.max(prev_max_a, prev_max_b); // If B[i] is considered if (i - 2 >= 0) { curr_max_b = Math.max(curr_max_b, Math.max(prev_max_a, prev_max_b) + b[i]); } // If i = 1, then consider the // value of dp[i][1] as b[i] else { curr_max_b = Math.max(curr_max_b, b[i]); } // assigning values to iterate further prev_max_a = curr_max_a; prev_max_b = curr_max_b; } // Return maximum Sum return Math.max(curr_max_a, curr_max_b); } // Given Input const A = [10, 1, 10, 10]; const B = [5, 50, 1, 5]; const N = A.length; // Function Call console.log(MaximumSum(A, B, N)); |
70
Time Complexity: O(N)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!