Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMaximize sum that can be obtained from two given arrays based on...

Maximize sum that can be obtained from two given arrays based on given conditions

Given two arrays A[] and B[] each of size N, the task is to find the maximum sum that can be obtained based on the following conditions:

  • Both A[i] and B[i] cannot be included in the sum ( 0 ? i ? N – 1 ).
  • If B[i] is added to the sum, then B[i – 1] and A[i – 1] cannot be included in the sum ( 0 ? i ? N – 1 ).

Examples:

Input: A[] = {10, 20, 5}, B[] = {5, 5, 45}
Output: 55
Explanation: The optimal way to maximize the sum is by including A[0] (= 10) and B[2] (= 45) in the sum. Therefore, sum = 10 + 45 = 55.

Input: A[] = {10, 1, 10, 10}, B[] = {5, 50, 1, 5}
Output: 70

Approach: This problem has Optimal substructure and Overlapping subproblems. Therefore, Dynamic Programming can be used to solve the problem. 
Follow the steps below to solve the problem:

  • Initialize a array, say dp[n][2], where dp[i][0] stores the maximum sum if element A[i] is taken into consideration and dp[i][1] stores the maximum sum if B[i] is taken into consideration.
  • Iterate in the range [0, N – 1] using a variable, say i, and perform the following steps:
    • If i is equal to 0, then modify the value of dp[i][0] as A[i] and dp[i][1] as B[i].
    • Otherwise, perform the following operations:
      • Modify the value of dp[i][0] as max(dp[i – 1][0], dp[i – 1][1]) + A[i].
      • Modify the value of dp[i][1] as max(dp[i – 1], max(dp[i – 1][0], max(dp[i – 2][0], dp[i – 2][1]) + B[i])).
  • After completing the above steps, print the max(dp[N-1][0], dp[N-1][1]) as the answer.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
int MaximumSum(int a[], int b[], int n)
{
    // Stores the maximum
    // sum from 0 to i
    int dp[n][2];
 
    // Initialize the value of
    // dp[0][0] and dp[0][1]
    dp[0][0] = a[0];
    dp[0][1] = b[0];
 
    // Traverse the array A[] and B[]
    for (int i = 1; i < n; i++) {
        // If A[i] is considered
        dp[i][0] = max(dp[i - 1][0], dp[i - 1][1]) + a[i];
 
        // If B[i] is not considered
        dp[i][1] = max(dp[i - 1][0], dp[i - 1][1]);
 
        // If B[i] is considered
        if (i - 2 >= 0) {
            dp[i][1] = max(dp[i][1],
                           max(dp[i - 2][0],
                               dp[i - 2][1])
                               + b[i]);
        }
        else {
            // If i = 1, then consider the
            // value of  dp[i][1] as b[i]
            dp[i][1] = max(dp[i][1], b[i]);
        }
    }
 
    // Return maximum Sum
    return max(dp[n - 1][0], dp[n - 1][1]);
}
 
// Driver Code
int main()
{
    // Given Input
    int A[] = { 10, 1, 10, 10 };
    int B[] = { 5, 50, 1, 5 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // Function Call
    cout << MaximumSum(A, B, N);
    return 0;
}


Java




// Java program for the above approach
 
class GFG {
    // Function to find the maximum sum
    // that can be obtained from two given
    // based on the following conditions
    public static int MaximumSum(int a[], int b[], int n) {
        // Stores the maximum
        // sum from 0 to i
        int[][] dp = new int[n][2];
 
        // Initialize the value of
        // dp[0][0] and dp[0][1]
        dp[0][0] = a[0];
        dp[0][1] = b[0];
 
        // Traverse the array A[] and B[]
        for (int i = 1; i < n; i++) {
            // If A[i] is considered
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1]) + a[i];
 
            // If B[i] is not considered
            dp[i][1] = Math.max(dp[i - 1][0], dp[i - 1][1]);
 
            // If B[i] is considered
            if (i - 2 >= 0) {
                dp[i][1] = Math.max(dp[i][1], Math.max(dp[i - 2][0], dp[i - 2][1]) + b[i]);
            } else
            {
               
                // If i = 1, then consider the
                // value of dp[i][1] as b[i]
                dp[i][1] = Math.max(dp[i][1], b[i]);
            }
        }
 
        // Return maximum Sum
        return Math.max(dp[n - 1][0], dp[n - 1][1]);
    }
 
    // Driver Code
    public static void main(String args[]) {
        // Given Input
        int A[] = { 10, 1, 10, 10 };
        int B[] = { 5, 50, 1, 5 };
        int N = A.length;
 
        // Function Call
        System.out.println(MaximumSum(A, B, N));
    }
}
 
// This  code is contributed by _saurabh_jaiswal.


Python3




# Python3 program for the above approach
 
# Function to find the maximum sum
# that can be obtained from two given
# arrays based on the following conditions
def MaximumSum(a, b, n):
   
    # Stores the maximum
    # sum from 0 to i
    dp = [[-1 for j in range(2)]
              for i in range(n)]
     
    # Initialize the value of
    # dp[0][0] and dp[0][1]
    dp[0][0] = a[0]
    dp[0][1] = b[0]
     
    # Traverse the array A[] and B[]
    for i in range(1, n):
       
        # If A[i] is considered
        dp[i][0] = max(dp[i - 1][0],
                       dp[i - 1][1]) + a[i]
         
        # If B[i] is not considered
        dp[i][1] = max(dp[i - 1][0],
                       dp[i - 1][1])
         
        # If B[i] is considered
        if (i - 2 >= 0):
            dp[i][1] = max(dp[i][1], max(dp[i - 2][0],
                                         dp[i - 2][1]) + b[i])
        else:
             
            # If i = 1, then consider the
            # value of  dp[i][1] as b[i]
            dp[i][1] = max(dp[i][1], b[i])
 
    # Return maximum sum
    return max(dp[n - 1][0], dp[n - 1][1])
 
# Driver code
if __name__ == '__main__':
     
    # Given input
    A = [ 10, 1, 10, 10 ]
    B = [ 5, 50, 1, 5 ]
    N = len(A)
     
    # Function call
    print(MaximumSum(A, B, N))
     
# This code is contributed by MuskanKalra1


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
static int MaximumSum(int []a, int []b, int n)
{
   
    // Stores the maximum
    // sum from 0 to i
    int [,]dp = new int[n,2];
 
    // Initialize the value of
    // dp[0][0] and dp[0][1]
    dp[0,0] = a[0];
    dp[0,1] = b[0];
 
    // Traverse the array A[] and B[]
    for (int i = 1; i < n; i++)
    {
       
        // If A[i] is considered
        dp[i,0] = Math.Max(dp[i - 1,0], dp[i - 1,1]) + a[i];
 
        // If B[i] is not considered
        dp[i,1] = Math.Max(dp[i - 1,0], dp[i - 1,1]);
 
        // If B[i] is considered
        if (i - 2 >= 0) {
            dp[i,1] = Math.Max(dp[i,1],
                           Math.Max(dp[i - 2,0],
                               dp[i - 2,1])
                               + b[i]);
        }
        else
        {
           
            // If i = 1, then consider the
            // value of  dp[i][1] as b[i]
            dp[i,1] = Math.Max(dp[i,1], b[i]);
        }
    }
 
    // Return maximum Sum
    return Math.Max(dp[n - 1,0], dp[n - 1,1]);
}
 
// Driver Code
public static void Main()
{
    // Given Input
    int []A = { 10, 1, 10, 10 };
    int []B = { 5, 50, 1, 5 };
    int N = A.Length;
 
    // Function Call
    Console.Write(MaximumSum(A, B, N));
}
}
 
// This code is contributed by ipg2016107.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
function MaximumSum(a, b, n)
{
     
    // Stores the maximum
    // sum from 0 to i
    let dp = new Array(n).fill(0).map(
       () => new Array(2));
 
    // Initialize the value of
    // dp[0][0] and dp[0][1]
    dp[0][0] = a[0];
    dp[0][1] = b[0];
 
    // Traverse the array A[] and B[]
    for(let i = 1; i < n; i++)
    {
         
        // If A[i] is considered
        dp[i][0] = Math.max(dp[i - 1][0],
                            dp[i - 1][1]) + a[i];
 
        // If B[i] is not considered
        dp[i][1] = Math.max(dp[i - 1][0],
                            dp[i - 1][1]);
 
        // If B[i] is considered
        if (i - 2 >= 0)
        {
            dp[i][1] = Math.max(dp[i][1],
                Math.max(dp[i - 2][0],
                          dp[i - 2][1]) + b[i]);
        }
        else
        {
             
            // If i = 1, then consider the
            // value of  dp[i][1] as b[i]
            dp[i][1] = Math.max(dp[i][1], b[i]);
        }
    }
 
    // Return maximum Sum
    return Math.max(dp[n - 1][0], dp[n - 1][1]);
}
 
// Driver Code
 
// Given Input
let A = [ 10, 1, 10, 10 ];
let B = [ 5, 50, 1, 5 ];
let N = A.length;
 
// Function Call
document.write(MaximumSum(A, B, N));
 
// This code is contributed by gfgking
 
</script>


Output

70


Time Complexity: O(N)
Auxiliary Space: O(N)

Efficient Approach – Space optimization: In the previous approach, the current value dp[i] is only dependent upon the just previous values i.e., dp[i – 1]. So to optimize the space we can keep track of previous and current values with the help of variables prev_max_a, prev_max_b and curr_max_a, curr_max_b which will reduce the space complexity from O(N) to O(1). Below are the steps:

  • Create variables prev_max_a and prev_max_b to keep track of previous values of DP.
  • Initialize base case prev_max_a = a[0] , prev_max_b = b[0].
  • Create a variable curr_max_a and curr_max_b to store the current value.
  • Iterate over the subproblem using loop and update curr_max_a and curr_max_b and after every iteration, update prev_max_a and prev_max_b for further iterations.
  • After the above steps, print the maximum of curr_max_a and curr_max_b.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
int MaximumSum(int a[], int b[], int n)
{
    int prev_max_a = a[0], curr_max_a = 0;
    int prev_max_b = b[0], curr_max_b = 0;
     
    // Traverse the array A[] and B[]
    for (int i = 1; i < n; i++) {
         
        // If A[i] is considered
        curr_max_a = max(prev_max_a, prev_max_b) + a[i];
         
         
        // If B[i] is not considered
        curr_max_b = max(prev_max_a, prev_max_b);
 
        // If B[i] is considered
        if (i - 2 >= 0) {
            curr_max_b = max(curr_max_b, max(prev_max_a, prev_max_b) + b[i]);
        }
         
        // If i = 1, then consider the
        // value of  dp[i][1] as b[i]
        else {
            curr_max_b = max(curr_max_b, b[i]);
        }
     
        // assigning values to iterate further
        prev_max_a = curr_max_a;
        prev_max_b = curr_max_b;
    }
 
    // Return maximum Sum
    return max(curr_max_a, curr_max_b);
}
 
// Driver Code
int main()
{
    // Given Input
    int A[] = { 10, 1, 10, 10 };
    int B[] = { 5, 50, 1, 5 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // Function Call
    cout << MaximumSum(A, B, N);
    return 0;
}
 
// --- by bhardwajji


Java




import java.util.*;
 
public class MaximumSumTwoArrays {
    public static int maximumSum(int[] a, int[] b, int n) {
        int prevMaxA = a[0];
        int currMaxA = 0;
        int prevMaxB = b[0];
        int currMaxB = 0;
 
        for (int i = 1; i < n; i++) {
            // If A[i] is considered
            currMaxA = Math.max(prevMaxA, prevMaxB) + a[i];
 
            // If B[i] is not considered
            currMaxB = Math.max(prevMaxA, prevMaxB);
 
            // If B[i] is considered
            if (i - 2 >= 0) {
                currMaxB = Math.max(currMaxB, Math.max(prevMaxA, prevMaxB) + b[i]);
            } else {
                // If i = 1, then consider the value of b[i]
                currMaxB = Math.max(currMaxB, b[i]);
            }
 
            // Assigning values to iterate further
            prevMaxA = currMaxA;
            prevMaxB = currMaxB;
        }
 
        // Return maximum sum
        return Math.max(currMaxA, currMaxB);
    }
 
    public static void main(String[] args) {
        // Given Input
        int[] A = { 10, 1, 10, 10 };
        int[] B = { 5, 50, 1, 5 };
        int N = A.length;
 
        // Function Call
        System.out.println(maximumSum(A, B, N));
    }
}


Python




# Python program for the above approach
 
# Function to find the maximum sum
# that can be obtained from two given
# based on the following conditions
def MaximumSum(a, b, n):
 
    prev_max_a = a[0]
    curr_max_a = 0
    prev_max_b = b[0]
    curr_max_b = 0
     
    # Traverse the array A[] and B[]
    for i in range(1, n):
         
        # If A[i] is considered
        curr_max_a = max(prev_max_a, prev_max_b) + a[i]
         
         
        # If B[i] is not considered
        curr_max_b = max(prev_max_a, prev_max_b)
 
        # If B[i] is considered
        if i - 2 >= 0:
            curr_max_b = max(curr_max_b, max(prev_max_a, prev_max_b) + b[i])
         
        # If i = 1, then consider the
        # value of dp[i][1] as b[i]
        else:
            curr_max_b = max(curr_max_b, b[i])
     
        # assigning values to iterate further
        prev_max_a = curr_max_a
        prev_max_b = curr_max_b
 
    # Return maximum Sum
    return max(curr_max_a, curr_max_b)
 
# Driver Code
if __name__ == '__main__':
    # Given Input
    A = [10, 1, 10, 10]
    B = [5, 50, 1, 5]
    N = len(A)
 
    # Function Call
    print(MaximumSum(A, B, N))


C#




using System;
 
class Program {
    // Function to find the maximum sum
    // that can be obtained from two given
    // arrays based on the following conditions
    static int MaximumSum(int[] a, int[] b, int n)
    {
        int prevMaxA = a[0], currMaxA = 0;
        int prevMaxB = b[0], currMaxB = 0;
 
        // Traverse the arrays A[] and B[]
        for (int i = 1; i < n; i++) {
            // If A[i] is considered
            currMaxA = Math.Max(prevMaxA, prevMaxB) + a[i];
 
            // If B[i] is not considered
            currMaxB = Math.Max(prevMaxA, prevMaxB);
 
            // If B[i] is considered
            if (i - 2 >= 0) {
                currMaxB = Math.Max(
                    currMaxB,
                    Math.Max(prevMaxA, prevMaxB) + b[i]);
            }
 
            // If i = 1, then consider the
            // value of dp[i][1] as b[i]
            else {
                currMaxB = Math.Max(currMaxB, b[i]);
            }
 
            // Assigning values to iterate further
            prevMaxA = currMaxA;
            prevMaxB = currMaxB;
        }
 
        // Return maximum Sum
        return Math.Max(currMaxA, currMaxB);
    }
 
    // Driver Code
    static void Main()
    {
        // Given Input
        int[] A = { 10, 1, 10, 10 };
        int[] B = { 5, 50, 1, 5 };
        int N = A.Length;
 
        // Function Call
        Console.WriteLine(MaximumSum(A, B, N));
    }
}


Javascript




// Function to find the maximum sum
// that can be obtained from two given
// based on the following conditions
function MaximumSum(a, b, n) {
 
    let prev_max_a = a[0];
    let curr_max_a = 0;
    let prev_max_b = b[0];
    let curr_max_b = 0;
 
    // Traverse the array A[] and B[]
    for (let i = 1; i < n; i++) {
 
        // If A[i] is considered
        curr_max_a = Math.max(prev_max_a, prev_max_b) + a[i];
 
 
        // If B[i] is not considered
        curr_max_b = Math.max(prev_max_a, prev_max_b);
 
        // If B[i] is considered
        if (i - 2 >= 0) {
            curr_max_b = Math.max(curr_max_b, Math.max(prev_max_a, prev_max_b) + b[i]);
        }
 
        // If i = 1, then consider the
        // value of dp[i][1] as b[i]
        else {
            curr_max_b = Math.max(curr_max_b, b[i]);
        }
 
        // assigning values to iterate further
        prev_max_a = curr_max_a;
        prev_max_b = curr_max_b;
    }
 
    // Return maximum Sum
    return Math.max(curr_max_a, curr_max_b);
}
 
// Given Input
const A = [10, 1, 10, 10];
const B = [5, 50, 1, 5];
const N = A.length;
 
// Function Call
console.log(MaximumSum(A, B, N));


Output

70

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments