Given three integers N, M and K and an array a[] consisting of N integers, where M and K denotes the total number of possible moves and the number of possible moves(shift by an index) on the left of the current element in an array respectively, the task is to maximize the sum possible by traversing the array utilizing all the available moves.
Examples:
Input: N = 5, M = 4, K = 0, a[] = {1, 5, 4, 3, 2}
Output: 15
Explanation:
Since no moves towards left is possible, therefore, the only possible path is a[0] -> a[1] -> a[2] -> a[3] -> a[4].
Therefore, the sum calculated is 15.
Input: N = 5, M = 4, K = 1, a[]= {1, 5, 4, 3, 2}
Output: 19
Explanation:
The maximum sum can be obtained in the path a[0] -> a[1] -> a[2] -> a[1] -> a[2]
Therefore, the maximum possible sum = 19
Approach: The above problem can be solved using Dynamic Programming. Follow the steps below to solve the problem:
- Initialize a dp[][] matrix such that dp[i][j] stores the maximum sum possible up to ith index by using j left moves.
- It can be observed that left move is possible only if i ? 1 and k > 0 and a right move is possible if i < n – 1.
- Check the conditions and update the maximum of the sums possible from the above two moves and store in dp[i][j].
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; const int k = 1; const int m = 4; // Function to find the maximum sum possible // by given moves from the array int maxValue( int a[], int n, int pos, int moves, int left, int dp[][k + 1]) { // Checking for boundary if (moves == 0 || (pos > n - 1 || pos < 0)) return 0; // If previously computed subproblem occurs if (dp[pos][left] != -1) return dp[pos][left]; int value = 0; // If element can be moved left if (left > 0 && pos >= 1) // Calculate maximum possible sum // by moving left from current index value = max(value, a[pos] + maxValue(a, n, pos - 1, moves - 1, left - 1, dp)); // If element can be moved right if (pos <= n - 1) // Calculate maximum possible sum // by moving right from current index // and update the maximum sum value = max(value, a[pos] + maxValue(a, n, pos + 1, moves - 1, left, dp)); // Store the maximum sum return dp[pos][left] = value; } // Driver Code int main() { int n = 5; int a[] = { 1, 5, 4, 3, 2 }; int dp[n + 1][k + 1]; memset (dp, -1, sizeof (dp)); cout << (a[0] + maxValue(a, n, 1, m, k, dp)) << endl; } // This code is contributed by sapnasingh4991 |
Java
// Java Program to implement // the above approach import java.io.*; import java.util.*; public class GFG { // Function to find the maximum sum possible // by given moves from the array public static int maxValue( int a[], int n, int pos, int moves, int left, int dp[][]) { // Checking for boundary if (moves == 0 || (pos > n - 1 || pos < 0 )) return 0 ; // If previously computed subproblem occurs if (dp[pos][left] != - 1 ) return dp[pos][left]; int value = 0 ; // If element can be moved left if (left > 0 && pos >= 1 ) // Calculate maximum possible sum // by moving left from current index value = Math.max( value, a[pos] + maxValue(a, n, pos - 1 , moves - 1 , left - 1 , dp)); // If element can be moved right if (pos <= n - 1 ) // Calculate maximum possible sum // by moving right from current index // and update the maximum sum value = Math.max( value, a[pos] + maxValue(a, n, pos + 1 , moves - 1 , left, dp)); // Store the maximum sum return dp[pos][left] = value; } // Driver Code public static void main(String args[]) { int n = 5 ; int a[] = { 1 , 5 , 4 , 3 , 2 }; int k = 1 ; int m = 4 ; int dp[][] = new int [n + 1 ][k + 1 ]; for ( int i[] : dp) Arrays.fill(i, - 1 ); System.out.println( (a[ 0 ] + maxValue(a, n, 1 , m, k, dp))); } } |
Python3
# Python3 program to implement # the above approach # Function to find the maximum sum possible # by given moves from the array def maxValue(a, n, pos, moves, left, dp): # Checking for boundary if (moves = = 0 or (pos > n - 1 or pos < 0 )): return 0 # If previously computed subproblem occurs if (dp[pos][left] ! = - 1 ): return dp[pos][left] value = 0 # If element can be moved left if (left > 0 and pos > = 1 ): # Calculate maximum possible sum # by moving left from current index value = max (value, a[pos] + maxValue(a, n, pos - 1 , moves - 1 , left - 1 , dp)) # If element can be moved right if (pos < = n - 1 ): # Calculate maximum possible sum # by moving right from current index # and update the maximum sum value = max (value, a[pos] + maxValue(a, n, pos + 1 , moves - 1 , left, dp)) # Store the maximum sum dp[pos][left] = value return dp[pos][left] # Driver Code n = 5 a = [ 1 , 5 , 4 , 3 , 2 ] k = 1 m = 4 dp = [[ - 1 for x in range (k + 1 )] for y in range (n + 1 )] # Function call print (a[ 0 ] + maxValue(a, n, 1 , m, k, dp)) # This code is contributed by Shivam Singh |
C#
// C# Program to implement // the above approach using System; class GFG { // Function to find the maximum sum possible // by given moves from the array public static int maxValue( int []a, int n, int pos, int moves, int left, int [,]dp) { // Checking for boundary if (moves == 0 || (pos > n - 1 || pos < 0)) return 0; // If previously computed subproblem occurs if (dp[pos, left] != -1) return dp[pos, left]; int value = 0; // If element can be moved left if (left > 0 && pos >= 1) // Calculate maximum possible sum // by moving left from current index value = Math.Max( value, a[pos] + maxValue(a, n, pos - 1, moves - 1, left - 1, dp)); // If element can be moved right if (pos <= n - 1) // Calculate maximum possible sum // by moving right from current index // and update the maximum sum value = Math.Max( value, a[pos] + maxValue(a, n, pos + 1, moves - 1, left, dp)); // Store the maximum sum return dp[pos, left] = value; } // Driver Code public static void Main(String []args) { int n = 5; int []a = { 1, 5, 4, 3, 2 }; int k = 1; int m = 4; int [,]dp = new int [n + 1, k + 1]; for ( int i = 0; i <= n; i++) for ( int j =0; j <= k; j++) dp[i, j] = -1; Console.WriteLine( (a[0] + maxValue(a, n, 1, m, k, dp))); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // JavaScript program for the // above approach // Function to find the maximum sum possible // by given moves from the array function maxValue(a, n, pos, moves, left, dp) { // Checking for boundary if (moves == 0 || (pos > n - 1 || pos < 0)) return 0; // If previously computed subproblem occurs if (dp[pos][left] != -1) return dp[pos][left]; let value = 0; // If element can be moved left if (left > 0 && pos >= 1) // Calculate maximum possible sum // by moving left from current index value = Math.max( value, a[pos] + maxValue(a, n, pos - 1, moves - 1, left - 1, dp)); // If element can be moved right if (pos <= n - 1) // Calculate maximum possible sum // by moving right from current index // and update the maximum sum value = Math.max( value, a[pos] + maxValue(a, n, pos + 1, moves - 1, left, dp)); // Store the maximum sum return dp[pos][left] = value; } // Driver Code let n = 5; let a = [ 1, 5, 4, 3, 2 ]; let k = 1; let m = 4; let dp = new Array(n + 1); // Loop to create 2D array using 1D array for ( var i = 0; i < dp.length; i++) { dp[i] = new Array(2); } for ( var i = 0; i < dp.length; i++) { for ( var j = 0; j < dp.length; j++) { dp[i][j] = -1; } } document.write( (a[0] + maxValue(a, n, 1, m, k, dp))); </script> |
19
Time Complexity: O(N * K)
Auxiliary Space: O(N * K)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!