Friday, January 10, 2025
Google search engine
HomeData Modelling & AIMaximize sum of products at corresponding indices in two arrays by reversing...

Maximize sum of products at corresponding indices in two arrays by reversing at most one subarray in first Array

Given two arrays A and B of size N, the task is to maximize the sum of A[i]*B[i] across all values of i from 0 to N-1 by reversing at most one subarray of array A.

Examples:

Input: N = 4, A = [5, 1, 2, 3], B = [1, 4, 3, 2]
Output: 33
Explanation: Array A after reversing the subarray A[0, 1] will become [1, 5, 2, 3]. Sum of A[i]*B[i] after the reversal becomes 1*1+5*4+2*3+3*2 = 33.

Input: N = 3, A = [6, 7, 3], B = [5, 1, 7]
Output: 82

Naive Approach: One simple way to solve this problem is to check for all possible subarrays of A and reverse them one by one to find the maximum possible value of the sum.

Below is the implementation of the above approach:

C++




// C++ program of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
int maxSum(vector<int>& A, vector<int>& B)
{
    int N = A.size();
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
 
    // Iterating for all subarrays
    for (int L = 0; L < N - 1; L++) {
        for (int R = L; R < N; R++) {
 
            // Variable for storing the sum after reversing
            // The subarray from L to R
            int curSum = 0;
            for (int i = 0; i < N; i++) {
 
                // Checking if the current index is in the
                // reversed subarray
                if (i >= L && i <= R)
                    curSum += A[L + R - i] * B[i];
                else
                    curSum += A[i] * B[i];
            }
 
            // Updating the answer
            maxPosSum = max(maxPosSum, curSum);
        }
    }
 
    // Returning the Maximum Possible Sum of product
    return maxPosSum;
}
 
// Driver Code
int main()
{
    // Given Input
    int N = 4;
    vector<int> A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
    cout << maxSum(A, B);
}


Java




// Java code to implement above approach
import java.util.*;
public class GFG {
 
  // Function to find the maximum sum of A[i]*B[i]
  // across all values of i from 0 to N-1 by reversing
  // at most one subarray of array A
  static int maxSum(int []A, int []B)
  {
    int N = A.length;
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
 
    // Iterating for all subarrays
    for (int L = 0; L < N - 1; L++) {
      for (int R = L; R < N; R++) {
 
        // Variable for storing the sum after reversing
        // The subarray from L to R
        int curSum = 0;
        for (int i = 0; i < N; i++) {
 
          // Checking if the current index is in the
          // reversed subarray
          if (i >= L && i <= R)
            curSum += A[L + R - i] * B[i];
          else
            curSum += A[i] * B[i];
        }
 
        // Updating the answer
        maxPosSum = Math.max(maxPosSum, curSum);
      }
    }
 
    // Returning the Maximum Possible Sum of product
    return maxPosSum;
  }
 
  // Driver code
  public static void main(String args[])
  {
     
    // Given Input
    int N = 4;
    int []A = { 5, 1, 2, 3 };
    int []B = { 1, 4, 3, 2 };
    System.out.println(maxSum(A, B));
 
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# Python code for the above approach
 
# Function to find the maximum sum of A[i]*B[i]
# across all values of i from 0 to N-1 by reversing
# at most one subarray of array A
def maxSum(A, B):
    N = len(A)
 
    # Initialising maximum possible sum variable
    maxPosSum = 0
 
    # Iterating for all subarrays
    for L in range(N - 1):
        for R in range(L, N):
 
            # Variable for storing the sum after reversing
            # The subarray from L to R
            curSum = 0
            for i in range(N):
                # Checking if the current index is in the
                # reversed subarray
                if (i >= L and i <= R):
                    curSum += A[L + R - i] * B[i]
                else:
                    curSum += A[i] * B[i]
 
            # Updating the answer
            maxPosSum = max(maxPosSum, curSum)
 
    # Returning the Maximum Possible Sum of product
    return maxPosSum
 
# Driver Code
 
# Given Input
N = 4
A = [5, 1, 2, 3]
B = [1, 4, 3, 2]
print(maxSum(A, B))
 
# This code is contributed by gfgking


C#




// C# code to implement above approach
using System;
public class GFG {
 
  // Function to find the maximum sum of A[i]*B[i]
  // across all values of i from 0 to N-1 by reversing
  // at most one subarray of array A
  static int maxSum(int []A, int []B)
  {
    int N = A.Length;
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
 
    // Iterating for all subarrays
    for (int L = 0; L < N - 1; L++) {
      for (int R = L; R < N; R++) {
 
        // Variable for storing the sum after reversing
        // The subarray from L to R
        int curSum = 0;
        for (int i = 0; i < N; i++) {
 
          // Checking if the current index is in the
          // reversed subarray
          if (i >= L && i <= R)
            curSum += A[L + R - i] * B[i];
          else
            curSum += A[i] * B[i];
        }
 
        // Updating the answer
        maxPosSum = Math.Max(maxPosSum, curSum);
      }
    }
 
    // Returning the Maximum Possible Sum of product
    return maxPosSum;
  }
 
  // Driver code
  public static void Main()
  {
     
    // Given Input
    int []A = { 5, 1, 2, 3 };
    int []B = { 1, 4, 3, 2 };
    Console.Write(maxSum(A, B));
 
  }
}
 
// This code is contributed by Saurabh Jaiswal


Javascript




<script>
   // JavaScript code for the above approach
 
   // Function to find the maximum sum of A[i]*B[i]
   // across all values of i from 0 to N-1 by reversing
   // at most one subarray of array A
   function maxSum(A, B)
   {
     let N = A.length;
 
     // Initialising maximum possible sum variable
     let maxPosSum = 0;
 
     // Iterating for all subarrays
     for (let L = 0; L < N - 1; L++) {
       for (let R = L; R < N; R++) {
 
         // Variable for storing the sum after reversing
         // The subarray from L to R
         let curSum = 0;
         for (let i = 0; i < N; i++) {
 
           // Checking if the current index is in the
           // reversed subarray
           if (i >= L && i <= R)
             curSum += A[L + R - i] * B[i];
           else
             curSum += A[i] * B[i];
         }
 
         // Updating the answer
         maxPosSum = Math.max(maxPosSum, curSum);
       }
     }
 
     // Returning the Maximum Possible Sum of product
     return maxPosSum;
   }
 
   // Driver Code
 
   // Given Input
   let N = 4;
   let A = [5, 1, 2, 3], B = [1, 4, 3, 2];
 
   document.write(maxSum(A, B));
 
 // This code is contributed by Potta Lokesh
 </script>


 
 

Output

33

 

Time Complexity: O(N3)
Auxiliary Space: O(1)

 

Efficient Approach: The above problem can be solved with the use of dynamic programming. Follow the below steps to solve this problem:

 

  • Let dp[L][[R] represent the sum of the product of A[i] and B[i] after reversing subarray A[L, R].
  • Observe that if the subarray A[L, R] is reversed, the subarray A[L+1, R-1] is also reversed. Therefore, dp[L][R] can be calculated by the use of dp[L+1][R-1] and by using the formula:

 dp[L][R] = dp[L+1][R-1]+ (A[R] * B[L]) – (A[L] * B[L]) + (A[L] * B[R]) – (A[R] * B[R])

  • Because In the calculation of dp[L+1][R-1], A[L]*B[L] and A[R]*B[R] is added whereas for the calculation dp[L][R], A[R]*B[L] and A[L]*B[R ]is added.
  • Hence we need to subtract A[L]*B[L] and A[R]*B[R] and add A[R]*B[L] and A[L]*B[R] to dp[L+1][R-1] for calculation of dp[L][R].
  • Print the answer according to the above observation.

 

Below is the implementation of the dynamic programming approach.

 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
int maxSum(vector<int>& A, vector<int>& B)
{
 
    int N = A.size();
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
    int dp[N][N];
 
    // Initialising the dp array
    memset(dp, 0, sizeof(dp));
 
    // Value of maxPosSum when no subarray is reversed
    for (int i = 0; i < N; i++)
        maxPosSum += A[i] * B[i];
 
    // Initialising dp for subarray of length 1
    for (int i = 0; i < N; i++)
        dp[i][i] = maxPosSum;
 
    // Initialising dp for subarray of length 2
    for (int i = 0; i < N - 1; i++) {
        int R = i + 1;
        int L = i;
        dp[L][R] = maxPosSum + (A[R] * B[L]) - (A[L] * B[L])
                   + (A[L] * B[R]) - (A[R] * B[R]);
    }
 
    // Calculating the complete dp array
    for (int R = 0; R < N; R++) {
        for (int L = 0; L < N; L++) {
 
            // If length of subarray is less 3, then
            // continuing
            if (R - L + 1 < 3)
                continue;
            dp[L][R] = dp[L + 1][R - 1] + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
    }
 
    // Updating the maxPosSum variable
    for (int L = 0; L < N; L++) {
        for (int R = L; R < N; R++) {
            maxPosSum = max(maxPosSum, dp[L][R]);
        }
    }
 
    // Returning the maximum possible sum of product
    return maxPosSum;
}
 
// Driver Code
int main()
{
    // Given Input
    vector<int> A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
    cout << maxSum(A, B);
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
static int maxSum(int[] A, int[] B)
{
 
    int N = A.length;
 
    // Initialising maximum possible sum variable
    int maxPosSum = 0;
    int [][]dp = new int[N][N];
 
 
    // Value of maxPosSum when no subarray is reversed
    for (int i = 0; i < N; i++)
        maxPosSum += A[i] * B[i];
 
    // Initialising dp for subarray of length 1
    for (int i = 0; i < N; i++)
        dp[i][i] = maxPosSum;
 
    // Initialising dp for subarray of length 2
    for (int i = 0; i < N - 1; i++) {
        int R = i + 1;
        int L = i;
        dp[L][R] = maxPosSum + (A[R] * B[L]) - (A[L] * B[L])
                   + (A[L] * B[R]) - (A[R] * B[R]);
    }
 
    // Calculating the complete dp array
    for (int R = 0; R < N; R++) {
        for (int L = 0; L < N; L++) {
 
            // If length of subarray is less 3, then
            // continuing
            if (R - L + 1 < 3)
                continue;
            dp[L][R] = dp[L + 1][R - 1] + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
    }
 
    // Updating the maxPosSum variable
    for (int L = 0; L < N; L++) {
        for (int R = L; R < N; R++) {
            maxPosSum = Math.max(maxPosSum, dp[L][R]);
        }
    }
 
    // Returning the maximum possible sum of product
    return maxPosSum;
}
 
// Driver Code
public static void main(String[] args)
{
    // Given Input
    int[] A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
    System.out.print(maxSum(A, B));
}
}
 
// This code is contributed by 29AjayKumar


Python




# Python implementation of the above approach
 
# Function to find the maximum sum of A[i]*B[i]
# across all values of i from 0 to N-1 by reversing
# at most one subarray of array A
def maxSum(A, B):
 
    N = len(A)
 
    # Initialising maximum possible sum variable
    maxPosSum = 0
 
    # Initialising the dp array
    dp = ([[0 for i in range(N)]
           for i in range(N)])
 
    # Value of maxPosSum when no subarray is reversed
    for i in range(0, N):
        maxPosSum = maxPosSum + (A[i] * B[i])
 
    # Initialising dp for subarray of length 1
    for i in range(0, N):
        dp[i][i] = maxPosSum
 
    # Initialising dp for subarray of length 2
    for i in range(0, N - 1):
        R = i + 1
        L = i
        dp[L][R] = maxPosSum + (A[R] * B[L]) - \
            (A[L] * B[L]) + (A[L] * B[R]) - (A[R] * B[R])
 
    # Calculating the complete dp array
    for R in range(0, N):
        for L in range(0, N):
 
            # If length of subarray is less 3, then
            # continuing
            if (R - L + 1 < 3):
                continue
            dp[L][R] = dp[L + 1][R - 1] + \
                (A[R] * B[L]) - (A[L] * B[L]) + (A[L] * B[R]) - (A[R] * B[R])
 
    # Updating the maxPosSum variable
    for R in range(0, N):
        for L in range(0, N):
            maxPosSum = max(maxPosSum, dp[L][R])
 
    # Returning the maximum possible sum of product
    return maxPosSum
 
# Driver Code
# Given Input
A = [5, 1, 2, 3]
B = [1, 4, 3, 2]
 
print(maxSum(A, B))
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# implementation of the above approach
using System;
class GFG {
 
    // Function to find the maximum sum of A[i]*B[i]
    // across all values of i from 0 to N-1 by reversing
    // at most one subarray of array A
    static int maxSum(int[] A, int[] B)
    {
 
        int N = A.Length;
 
        // Initialising maximum possible sum variable
        int maxPosSum = 0;
        int[, ] dp = new int[N, N];
 
        // Initialising the dp array
        // memset(dp, 0, sizeof(dp));
 
        // Value of maxPosSum when no subarray is reversed
        for (int i = 0; i < N; i++)
            maxPosSum += A[i] * B[i];
 
        // Initialising dp for subarray of length 1
        for (int i = 0; i < N; i++)
            dp[i, i] = maxPosSum;
 
        // Initialising dp for subarray of length 2
        for (int i = 0; i < N - 1; i++) {
            int R = i + 1;
            int L = i;
            dp[L, R] = maxPosSum + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
 
        // Calculating the complete dp array
        for (int R = 0; R < N; R++) {
            for (int L = 0; L < N; L++) {
 
                // If length of subarray is less 3, then
                // continuing
                if (R - L + 1 < 3)
                    continue;
                dp[L, R] = dp[L + 1, R - 1] + (A[R] * B[L])
                           - (A[L] * B[L]) + (A[L] * B[R])
                           - (A[R] * B[R]);
            }
        }
 
        // Updating the maxPosSum variable
        for (int L = 0; L < N; L++) {
            for (int R = L; R < N; R++) {
                maxPosSum = Math.Max(maxPosSum, dp[L, R]);
            }
        }
 
        // Returning the maximum possible sum of product
        return maxPosSum;
    }
 
    // Driver Code
    public static void Main()
    {
        // Given Input
        int[] A = { 5, 1, 2, 3 }, B = { 1, 4, 3, 2 };
 
        Console.WriteLine(maxSum(A, B));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
// javascript implementation of the above approach
 
// Function to find the maximum sum of A[i]*B[i]
// across all values of i from 0 to N-1 by reversing
// at most one subarray of array A
function maxSum(A, B)
{
 
    var N = A.length;
 
    // Initialising maximum possible sum variable
    var maxPosSum = 0;
    var dp = Array(N).fill(0).map(x => Array(N).fill(0));   
     
    // Value of maxPosSum when no subarray is reversed
    for (var i = 0; i < N; i++)
        maxPosSum += A[i] * B[i];
 
    // Initialising dp for subarray of length 1
    for (var i = 0; i < N; i++)
        dp[i][i] = maxPosSum;
 
    // Initialising dp for subarray of length 2
    for (var i = 0; i < N - 1; i++) {
        var R = i + 1;
        var L = i;
        dp[L][R] = maxPosSum + (A[R] * B[L]) - (A[L] * B[L])
                   + (A[L] * B[R]) - (A[R] * B[R]);
    }
 
    // Calculating the complete dp array
    for (var R = 0; R < N; R++) {
        for (var L = 0; L < N; L++) {
 
            // If length of subarray is less 3, then
            // continuing
            if (R - L + 1 < 3)
                continue;
            dp[L][R] = dp[L + 1][R - 1] + (A[R] * B[L])
                       - (A[L] * B[L]) + (A[L] * B[R])
                       - (A[R] * B[R]);
        }
    }
 
    // Updating the maxPosSum variable
    for (var L = 0; L < N; L++) {
        for (var R = L; R < N; R++) {
            maxPosSum = Math.max(maxPosSum, dp[L][R]);
        }
    }
 
    // Returning the maximum possible sum of product
    return maxPosSum;
}
 
// Driver Code
// Given Input
var A = [ 5, 1, 2, 3 ], B = [ 1, 4, 3, 2 ];
 
document.write(maxSum(A, B));
 
// This code is contributed by 29AjayKumar
</script>


 
 

Output

33

 

Time Complexity: O(N2)
Auxiliary Space: O(N2)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments