Given an array A[] of size N, the task is to find the maximum score possible of this array. The score of an array is calculated by performing the following operations on the array until the size of the array is greater than 2:
- Select an index i such that 1 < i < N.
- Add A[i-1] * A[i+1] into the score
- Remove A[i] from the array.
Example:
Input: A[] = {1, 2, 3, 4}
Output: 12
Explanation:
In the first operation, select i = 2. The score will be increased by A[1] * A[3] = 2 * 4 = 8. The new array after removing A[2] will be {1, 2, 4}.
In the first operation, select i = 1. The score will be increased by A[0] * A[2] = 1 * 4 = 4. The new array after removing A[2] will be {1, 4}.
Since N <= 2, no more operations are possible.
The total score will be 8 + 4 = 12 which is the maximum over all possible choices.Input: {1, 55}
Output: 0
Explanation: No valid moves are possible.
Approach: The given problem can be solved using Dynamic Programming based on the following observations:
- Consider a 2D array, say dp[][] where dp[i][j] represents the maximum possible score in the subarray from index i to j.
- Iterate over all the subarrays of lengths len in the range [1, N-1] in increasing order where i denotes the start and j denoted the ending index of the subarray of current length.
- It can be observed that for a subarray from i to j, the index of the last remaining element k, other than i and j can be in the range [i+1, j-1]. Therefore, iterate over all possible values of k. Therefore, the DP relation can be stated as follows:
dp[i][j] = max( dp[i][j], dp[i][k] + dp[k][j] + A[i]*A[j]) for all k in range [i+1, j-1]
- The final answer will be dp[0][N-1].
Below is the implementation of the above approach:
C++
// C++ implementation for the above approach #include <bits/stdc++.h> using namespace std; // Stores the dp state where dp[i][j] // represents the maximum possible score // in the subarray from index i to j int dp[101][101]; // Function to calculate maximum possible // score using the given operations int maxMergingScore( int A[], int N) { // Iterate through all possible // lengths of the subarray for ( int len = 1; len < N; ++len) { // Iterate through all the // possible starting indices i // having length len for ( int i = 0; i + len < N; ++i) { // Stores the rightmost index // of the current subarray int j = i + len; // Initial dp[i][j] will be 0. dp[i][j] = 0; // Iterate through all possible // values of k in range [i+1, j-1] for ( int k = i + 1; k < j; ++k) { dp[i][j] = max( dp[i][j], dp[i][k] + dp[k][j] + A[i] * A[j]); } } } // Return the answer return dp[0][N - 1]; } // Driver Code int main() { int N = 4; int A[] = { 1, 2, 3, 4 }; // Function Call cout << maxMergingScore(A, N) << endl; N = 2; int B[] = { 1, 55 }; // Function Call cout << maxMergingScore(B, N) << endl; return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Stores the dp state where dp[i][j] // represents the maximum possible score // in the subarray from index i to j static int maxMergingScore( int A[], int N) { int [][] dp = new int [ 101 ][ 101 ]; for ( int i = 0 ; i < 101 ; i++) { { for ( int j = 0 ; j < 101 ; j++) dp[i][j] = 0 ; } } // Iterate through all possible // lengths of the subarray for ( int len = 1 ; len < N; ++len) { // Iterate through all the // possible starting indices i // having length len for ( int i = 0 ; i + len < N; ++i) { // Stores the rightmost index // of the current subarray int j = i + len; // Initial dp[i][j] will be 0. dp[i][j] = 0 ; // Iterate through all possible // values of k in range [i+1, j-1] for ( int k = i + 1 ; k < j; ++k) { dp[i][j] = Math.max( dp[i][j], dp[i][k] + dp[k][j] + A[i] * A[j]); } } } // Return the answer return dp[ 0 ][N - 1 ]; } // Driver Code public static void main(String[] args) { int N = 4 ; int A[] = { 1 , 2 , 3 , 4 }; // Function Call System.out.println(maxMergingScore(A, N) ); N = 2 ; int B[] = { 1 , 55 }; // Function Call System.out.println(maxMergingScore(B, N) ); } } // This code is contributed by dwivediyash |
C#
// C# program for the above approach using System; public class GFG { // Stores the dp state where dp[i][j] // represents the maximum possible score // in the subarray from index i to j static int maxMergingScore( int []A, int N) { int [,] dp = new int [101,101]; for ( int i = 0; i < 101; i++) { { for ( int j = 0; j < 101; j++) dp[i, j] = 0; } } // Iterate through all possible // lengths of the subarray for ( int len = 1; len < N; ++len) { // Iterate through all the // possible starting indices i // having length len for ( int i = 0; i + len < N; ++i) { // Stores the rightmost index // of the current subarray int j = i + len; // Initial dp[i][j] will be 0. dp[i,j] = 0; // Iterate through all possible // values of k in range [i+1, j-1] for ( int k = i + 1; k < j; ++k) { dp[i,j] = Math.Max( dp[i,j], dp[i,k] + dp[k,j] + A[i] * A[j]); } } } // Return the answer return dp[0,N - 1]; } // Driver Code static public void Main (){ int N = 4; int []A = { 1, 2, 3, 4 }; // Function Call Console.WriteLine(maxMergingScore(A, N) ); N = 2; int [] B = { 1, 55 }; // Function Call Console.WriteLine(maxMergingScore(B, N) ); } } // This code is contributed by maddler. |
Python3
# Python 3 implementation for the above approach # Stores the dp state where dp[i][j] # represents the maximum possible score # in the subarray from index i to j # Function to calculate maximum possible # score using the given operations def maxMergingScore(A, N): # Iterate through all possible # lengths of the subarray dp = [[ 0 for i in range ( 101 )] for j in range ( 101 )] for len1 in range ( 1 ,N, 1 ): # Iterate through all the # possible starting indices i # having length len1 for i in range ( 0 , N - len1, 1 ): # Stores the rightmost index # of the current subarray j = i + len1 # Initial dp[i][j] will be 0. dp[i][j] = 0 # Iterate through all possible # values of k in range [i+1, j-1] for k in range (i + 1 , j, 1 ): dp[i][j] = max (dp[i][j],dp[i][k] + dp[k][j] + A[i] * A[j]) # Return the answer return dp[ 0 ][N - 1 ] # Driver Code if __name__ = = '__main__' : N = 4 A = [ 1 , 2 , 3 , 4 ] # Function Call print (maxMergingScore(A, N)) N = 2 B = [ 1 , 55 ] # Function Call print (maxMergingScore(B, N)) # This code is contributed by SURENDRA_GANGWAR. |
Javascript
<script> // JavaScript Program to implement // the above approach // Stores the dp state where dp[i][j] // represents the maximum possible score // in the subarray from index i to j let dp = Array(101).fill().map(() => Array(101)); // Function to calculate maximum possible // score using the given operations function maxMergingScore(A, N) { // Iterate through all possible // lengths of the subarray for (let len = 1; len < N; ++len) { // Iterate through all the // possible starting indices i // having length len for (let i = 0; i + len < N; ++i) { // Stores the rightmost index // of the current subarray let j = i + len; // Initial dp[i][j] will be 0. dp[i][j] = 0; // Iterate through all possible // values of k in range [i+1, j-1] for (let k = i + 1; k < j; ++k) { dp[i][j] = Math.max( dp[i][j], dp[i][k] + dp[k][j] + A[i] * A[j]); } } } // Return the answer return dp[0][N - 1]; } // Driver Code let N = 4; let A = [1, 2, 3, 4]; // Function Call document.write(maxMergingScore(A, N) + "<br>" ); N = 2; let B = [1, 55]; // Function Call document.write(maxMergingScore(B, N) + "<br>" ); // This code is contributed by Potta Lokesh </script> |
12 0
Time Complexity: O(N3)
Auxiliary Space: O(N2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!