Given a square matrix, mat[][] of dimensions N * N, the task is find the maximum sum of diagonal elements possible from the given matrix by rotating either all the rows or all the columns of the matrix by a positive integer.
Examples:
Input: mat[][] = { { 1, 1, 2 }, { 2, 1, 2 }, { 1, 2, 2 } }
Output: 6
Explanation:
Rotating all the columns of matrix by 1 modifies mat[][] to { {2, 1, 2}, {1, 2, 2}, {1, 1, 2} }.
Therefore, the sum of diagonal elements of the matrix = 2 + 2 + 2 = 6 which is the maximum possible.Input: A[][] = { { -1, 2 }, { -1, 3 } }
Output: 2
Approach: The idea is to rotate all the rows and columns of the matrix in all possible ways and calculate the maximum sum obtained. Follow the steps to solve the problem:
- Initialize a variable, say maxDiagonalSum to store the maximum possible sum of diagonal elements the matrix by rotating all the rows or columns of the matrix.
- Rotate all the rows of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
- Rotate all the columns of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
- Finally, print the value of maxDiagonalSum.
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; #define N 3 // Function to find maximum sum of diagonal elements // of matrix by rotating either rows or columns int findMaximumDiagonalSumOMatrixf( int A[][N]) { // Stores maximum diagonal sum of elements // of matrix by rotating rows or columns int maxDiagonalSum = INT_MIN; // Rotate all the columns by an integer // in the range [0, N - 1] for ( int i = 0; i < N; i++) { // Stores sum of diagonal elements // of the matrix int curr = 0; // Calculate sum of diagonal // elements of the matrix for ( int j = 0; j < N; j++) { // Update curr curr += A[j][(i + j) % N]; } // Update maxDiagonalSum maxDiagonalSum = max(maxDiagonalSum, curr); } // Rotate all the rows by an integer // in the range [0, N - 1] for ( int i = 0; i < N; i++) { // Stores sum of diagonal elements // of the matrix int curr = 0; // Calculate sum of diagonal // elements of the matrix for ( int j = 0; j < N; j++) { // Update curr curr += A[(i + j) % N][j]; } // Update maxDiagonalSum maxDiagonalSum = max(maxDiagonalSum, curr); } return maxDiagonalSum; } // Driver code int main() { int mat[N][N] = { { 1, 1, 2 }, { 2, 1, 2 }, { 1, 2, 2 } }; cout<< findMaximumDiagonalSumOMatrixf(mat); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG{ static int N = 3 ; // Function to find maximum sum of // diagonal elements of matrix by // rotating either rows or columns static int findMaximumDiagonalSumOMatrixf( int A[][]) { // Stores maximum diagonal sum of elements // of matrix by rotating rows or columns int maxDiagonalSum = Integer.MIN_VALUE; // Rotate all the columns by an integer // in the range [0, N - 1] for ( int i = 0 ; i < N; i++) { // Stores sum of diagonal elements // of the matrix int curr = 0 ; // Calculate sum of diagonal // elements of the matrix for ( int j = 0 ; j < N; j++) { // Update curr curr += A[j][(i + j) % N]; } // Update maxDiagonalSum maxDiagonalSum = Math.max(maxDiagonalSum, curr); } // Rotate all the rows by an integer // in the range [0, N - 1] for ( int i = 0 ; i < N; i++) { // Stores sum of diagonal elements // of the matrix int curr = 0 ; // Calculate sum of diagonal // elements of the matrix for ( int j = 0 ; j < N; j++) { // Update curr curr += A[(i + j) % N][j]; } // Update maxDiagonalSum maxDiagonalSum = Math.max(maxDiagonalSum, curr); } return maxDiagonalSum; } // Driver Code public static void main(String[] args) { int [][] mat = { { 1 , 1 , 2 }, { 2 , 1 , 2 }, { 1 , 2 , 2 } }; System.out.println( findMaximumDiagonalSumOMatrixf(mat)); } } // This code is contributed by susmitakundugoaldanga |
Python3
# Python3 program to implement # the above approach import sys N = 3 # Function to find maximum sum of diagonal # elements of matrix by rotating either # rows or columns def findMaximumDiagonalSumOMatrixf(A): # Stores maximum diagonal sum of elements # of matrix by rotating rows or columns maxDiagonalSum = - sys.maxsize - 1 # Rotate all the columns by an integer # in the range [0, N - 1] for i in range (N): # Stores sum of diagonal elements # of the matrix curr = 0 # Calculate sum of diagonal # elements of the matrix for j in range (N): # Update curr curr + = A[j][(i + j) % N] # Update maxDiagonalSum maxDiagonalSum = max (maxDiagonalSum, curr) # Rotate all the rows by an integer # in the range [0, N - 1] for i in range (N): # Stores sum of diagonal elements # of the matrix curr = 0 # Calculate sum of diagonal # elements of the matrix for j in range (N): # Update curr curr + = A[(i + j) % N][j] # Update maxDiagonalSum maxDiagonalSum = max (maxDiagonalSum, curr) return maxDiagonalSum # Driver code if __name__ = = "__main__" : mat = [ [ 1 , 1 , 2 ], [ 2 , 1 , 2 ], [ 1 , 2 , 2 ] ] print (findMaximumDiagonalSumOMatrixf(mat)) # This code is contributed by chitranayal |
C#
// C# program to implement // the above approach using System; class GFG{ static int N = 3; // Function to find maximum sum of // diagonal elements of matrix by // rotating either rows or columns static int findMaximumDiagonalSumOMatrixf( int [,] A) { // Stores maximum diagonal sum of elements // of matrix by rotating rows or columns int maxDiagonalSum = Int32.MinValue; // Rotate all the columns by an integer // in the range [0, N - 1] for ( int i = 0; i < N; i++) { // Stores sum of diagonal elements // of the matrix int curr = 0; // Calculate sum of diagonal // elements of the matrix for ( int j = 0; j < N; j++) { // Update curr curr += A[j, (i + j) % N]; } // Update maxDiagonalSum maxDiagonalSum = Math.Max(maxDiagonalSum, curr); } // Rotate all the rows by an integer // in the range [0, N - 1] for ( int i = 0; i < N; i++) { // Stores sum of diagonal elements // of the matrix int curr = 0; // Calculate sum of diagonal // elements of the matrix for ( int j = 0; j < N; j++) { // Update curr curr += A[(i + j) % N, j]; } // Update maxDiagonalSum maxDiagonalSum = Math.Max(maxDiagonalSum, curr); } return maxDiagonalSum; } // Driver Code public static void Main() { int [,] mat = { { 1, 1, 2 }, { 2, 1, 2 }, { 1, 2, 2 } }; Console.Write(findMaximumDiagonalSumOMatrixf(mat)); } } // This code is contributed by code_hunt |
Javascript
<script> // Javascript program to implement // the above approach let N = 3; // Function to find maximum sum of // diagonal elements of matrix by // rotating either rows or columns function findMaximumDiagonalSumOMatrixf(A) { // Stores maximum diagonal sum of elements // of matrix by rotating rows or columns let maxDiagonalSum = Number.MIN_VALUE; // Rotate all the columns by an integer // in the range [0, N - 1] for (let i = 0; i < N; i++) { // Stores sum of diagonal elements // of the matrix let curr = 0; // Calculate sum of diagonal // elements of the matrix for (let j = 0; j < N; j++) { // Update curr curr += A[j][(i + j) % N]; } // Update maxDiagonalSum maxDiagonalSum = Math.max(maxDiagonalSum, curr); } // Rotate all the rows by an integer // in the range [0, N - 1] for (let i = 0; i < N; i++) { // Stores sum of diagonal elements // of the matrix let curr = 0; // Calculate sum of diagonal // elements of the matrix for (let j = 0; j < N; j++) { // Update curr curr += A[(i + j) % N][j]; } // Update maxDiagonalSum maxDiagonalSum = Math.max(maxDiagonalSum, curr); } return maxDiagonalSum; } // Driver Code let mat = [[ 1, 1, 2 ], [ 2, 1, 2 ], [ 1, 2, 2 ]]; document.write( findMaximumDiagonalSumOMatrixf(mat)); // This code is contributed by souravghosh0416. </script> |
6
Time Complexity: O(N2)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!