Given an array arr[], the task is to find the maximum sum of all the elements which are not a part of the longest increasing subsequence.
Examples:
Input: arr[] = {4, 6, 1, 2, 3, 8}
Output: 10
Explanation:
Elements are 4 and 6Input: arr[] = {5, 4, 3, 2, 1}
Output: 14
Explanation:
Elements are 5, 4, 3, 2
Approach:
- The idea is to find the longest increasing subsequence with the minimum sum and then subtract it from the sum of all elements.
- To do this we will use the concept of LIS using Dynamic Programming and store the sum along with the length of the subsequences and update the minimum sum accordingly.
Below is the implementation of the above approach.
C++
// C++ program to find the Maximum sum of // all elements which are not a part of // longest increasing sub sequence #include <bits/stdc++.h> using namespace std; // Function to find maximum sum int findSum( int * arr, int n) { int totalSum = 0; // Find total sum of array for ( int i = 0; i < n; i++) { totalSum += arr[i]; } // Maintain a 2D array int dp[2][n]; for ( int i = 0; i < n; i++) { dp[0][i] = 1; dp[1][i] = arr[i]; } // Update the dp array along // with sum in the second row for ( int i = 1; i < n; i++) { for ( int j = 0; j < i; j++) { if (arr[i] > arr[j]) { // In case of greater length // Update the length along // with sum if (dp[0][i] < dp[0][j] + 1) { dp[0][i] = dp[0][j] + 1; dp[1][i] = dp[1][j] + arr[i]; } // In case of equal length // find length update length // with minimum sum else if (dp[0][i] == dp[0][j] + 1) { dp[1][i] = min(dp[1][i], dp[1][j] + arr[i]); } } } } int maxm = 0; int subtractSum = 0; // Find the sum that need to // be subtracted from total sum for ( int i = 0; i < n; i++) { if (dp[0][i] > maxm) { maxm = dp[0][i]; subtractSum = dp[1][i]; } else if (dp[0][i] == maxm) { subtractSum = min(subtractSum, dp[1][i]); } } // Return the sum return totalSum - subtractSum; } // Driver code int main() { int arr[] = { 4, 6, 1, 2, 3, 8 }; int n = sizeof (arr) / sizeof (arr[0]); cout << findSum(arr, n); return 0; } |
Java
// Java program to find the Maximum sum of // all elements which are not a part of // longest increasing sub sequence import java.io.*; class GFG { // Function to find maximum sum static int findSum( int [] arr, int n) { int totalSum = 0 ; // Find total sum of array for ( int i = 0 ; i < n; i++) { totalSum += arr[i]; } // Maintain a 2D array int [][] dp = new int [ 2 ][n]; for ( int i = 0 ; i < n; i++) { dp[ 0 ][i] = 1 ; dp[ 1 ][i] = arr[i]; } // Update the dp array along // with sum in the second row for ( int i = 1 ; i < n; i++) { for ( int j = 0 ; j < i; j++) { if (arr[i] > arr[j]) { // In case of greater length // Update the length along // with sum if (dp[ 0 ][i] < dp[ 0 ][j] + 1 ) { dp[ 0 ][i] = dp[ 0 ][j] + 1 ; dp[ 1 ][i] = dp[ 1 ][j] + arr[i]; } // In case of equal length // find length update length // with minimum sum else if (dp[ 0 ][i] == dp[ 0 ][j] + 1 ) { dp[ 1 ][i] = Math.min( dp[ 1 ][i], dp[ 1 ][j] + arr[i]); } } } } int maxm = 0 ; int subtractSum = 0 ; // Find the sum that need to // be subtracted from total sum for ( int i = 0 ; i < n; i++) { if (dp[ 0 ][i] > maxm) { maxm = dp[ 0 ][i]; subtractSum = dp[ 1 ][i]; } else if (dp[ 0 ][i] == maxm) { subtractSum = Math.min(subtractSum, dp[ 1 ][i]); } } // Return the sum return totalSum - subtractSum; } // Driver code public static void main(String[] args) { int arr[] = { 4 , 6 , 1 , 2 , 3 , 8 }; int n = arr.length; System.out.print(findSum(arr, n)); } } // This code is contributed by sapnasingh4991 |
Python3
# Python3 program to find the maximum sum # of all elements which are not a part of # longest increasing sub sequence # Function to find maximum sum def findSum(arr, n): totalSum = 0 # Find total sum of array for i in range (n): totalSum + = arr[i] # Maintain a 2D array dp = [[ 0 ] * n for i in range ( 2 )] for i in range (n): dp[ 0 ][i] = 1 dp[ 1 ][i] = arr[i] # Update the dp array along # with sum in the second row for i in range ( 1 , n): for j in range (i): if (arr[i] > arr[j]): # In case of greater length # update the length along # with sum if (dp[ 0 ][i] < dp[ 0 ][j] + 1 ): dp[ 0 ][i] = dp[ 0 ][j] + 1 dp[ 1 ][i] = dp[ 1 ][j] + arr[i] # In case of equal length # find length update length # with minimum sum elif (dp[ 0 ][i] = = dp[ 0 ][j] + 1 ): dp[ 1 ][i] = min (dp[ 1 ][i], dp[ 1 ][j] + arr[i]) maxm = 0 subtractSum = 0 # Find the sum that need to # be subtracted from total sum for i in range (n): if (dp[ 0 ][i] > maxm): maxm = dp[ 0 ][i] subtractSum = dp[ 1 ][i] elif (dp[ 0 ][i] = = maxm): subtractSum = min (subtractSum, dp[ 1 ][i]) # Return the sum return totalSum - subtractSum # Driver code arr = [ 4 , 6 , 1 , 2 , 3 , 8 ] n = len (arr) print (findSum(arr, n)) # This code is contributed by himanshu77 |
C#
// C# program to find the Maximum sum of // all elements which are not a part of // longest increasing sub sequence using System; class GFG{ // Function to find maximum sum static int findSum( int []arr, int n) { int totalSum = 0; // Find total sum of array for ( int i = 0; i < n; i++) { totalSum += arr[i]; } // Maintain a 2D array int [,]dp = new int [2, n]; for ( int i = 0; i < n; i++) { dp[0, i] = 1; dp[1, i] = arr[i]; } // Update the dp array along // with sum in the second row for ( int i = 1; i < n; i++) { for ( int j = 0; j < i; j++) { if (arr[i] > arr[j]) { // In case of greater length // Update the length along // with sum if (dp[0, i] < dp[0, j] + 1) { dp[0, i] = dp[0, j] + 1; dp[1, i] = dp[1, j] + arr[i]; } // In case of equal length // find length update length // with minimum sum else if (dp[0, i] == dp[0, j] + 1) { dp[1, i] = Math.Min(dp[1, i], dp[1, j] + arr[i]); } } } } int maxm = 0; int subtractSum = 0; // Find the sum that need to // be subtracted from total sum for ( int i = 0; i < n; i++) { if (dp[0, i] > maxm) { maxm = dp[0, i]; subtractSum = dp[1, i]; } else if (dp[0, i] == maxm) { subtractSum = Math.Min(subtractSum, dp[1, i]); } } // Return the sum return totalSum - subtractSum; } // Driver code public static void Main(String[] args) { int []arr = { 4, 6, 1, 2, 3, 8 }; int n = arr.Length; Console.Write(findSum(arr, n)); } } // This code is contributed by sapnasingh4991 |
Javascript
<script> // Javascript program to find the Maximum sum of // all elements which are not a part of // longest increasing sub sequence // Function to find maximum sum function findSum(arr, n) { var totalSum = 0; // Find total sum of array for ( var i = 0; i < n; i++) { totalSum += arr[i]; } // Maintain a 2D array var dp = Array.from(Array(2), () => Array(n)); for ( var i = 0; i < n; i++) { dp[0][i] = 1; dp[1][i] = arr[i]; } // Update the dp array along // with sum in the second row for ( var i = 1; i < n; i++) { for ( var j = 0; j < i; j++) { if (arr[i] > arr[j]) { // In case of greater length // Update the length along // with sum if (dp[0][i] < dp[0][j] + 1) { dp[0][i] = dp[0][j] + 1; dp[1][i] = dp[1][j] + arr[i]; } // In case of equal length // find length update length // with minimum sum else if (dp[0][i] == dp[0][j] + 1) { dp[1][i] = Math.min(dp[1][i], dp[1][j] + arr[i]); } } } } var maxm = 0; var subtractSum = 0; // Find the sum that need to // be subtracted from total sum for ( var i = 0; i < n; i++) { if (dp[0][i] > maxm) { maxm = dp[0][i]; subtractSum = dp[1][i]; } else if (dp[0][i] == maxm) { subtractSum = Math.min(subtractSum, dp[1][i]); } } // Return the sum return totalSum - subtractSum; } // Driver code var arr = [ 4, 6, 1, 2, 3, 8 ]; var n = arr.length; document.write( findSum(arr, n)); // This code is contributed by rrrtnx </script> |
10
Time Complexity: O(N2) where N is the length of the array arr[]
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!