Sunday, October 12, 2025
HomeData Modelling & AIMaximize sum of absolute difference between adjacent elements in Array with sum...

Maximize sum of absolute difference between adjacent elements in Array with sum K

Given two integers N and K, the task is to maximize the sum of absolute differences between adjacent elements of an array of length N and sum K.

Examples: 

Input: N = 5, K = 10 
Output: 20 
Explanation: 
The array arr[] with sum 10 can be {0, 5, 0, 5, 0}, maximizing the sum of absolute difference of adjacent elements ( 5 + 5 + 5 + 5 = 20)

Input: N = 2, K = 10 
Output: 10 

 

Approach: 
To maximize the sum of adjacent elements, follow the steps below: 
 

  • If N is 2, the maximum sum possible is K by placing K in 1 index and 0 on the other.
  • If N is 1, the maximum sum possible will always be 0.
  • For all other values of N, the answer will be 2 * K
     

Illustration: 
For N = 3, the arrangement {0, K, 0} maximizes the sum of absolute difference between adjacent elements to 2 * K
For N = 4, the arrangement {0, K/2, 0, K/2} or {0, K, 0, 0} maximizes the required sum of absolute difference between adjacent elements to 2 * K

Below is the implementation of the above approach: 
 

C++




// C++ program to maximize the
// sum of absolute differences
// between adjacent elements
#include <bits/stdc++.h>
using namespace std;
 
// Function for maximizing the sum
int maxAdjacentDifference(int N, int K)
{
    // Difference is 0 when only
    // one element is present
    // in array
    if (N == 1) {
        return 0;
    }
 
    // Difference is K when
    // two elements are
    // present in array
    if (N == 2) {
        return K;
    }
 
    // Otherwise
    return 2 * K;
}
 
// Driver code
int main()
{
 
    int N = 6;
    int K = 11;
 
    cout << maxAdjacentDifference(N, K);
 
    return 0;
}


Java




// Java program to maximize the
// sum of absolute differences
// between adjacent elements
import java.util.*;
 
class GFG{
 
// Function for maximising the sum
static int maxAdjacentDifference(int N, int K)
{
     
    // Difference is 0 when only
    // one element is present
    // in array
    if (N == 1)
    {
        return 0;
    }
 
    // Difference is K when
    // two elements are
    // present in array
    if (N == 2)
    {
        return K;
    }
 
    // Otherwise
    return 2 * K;
}
 
// Driver code
public static void main(String[] args)
{
    int N = 6;
    int K = 11;
 
    System.out.print(maxAdjacentDifference(N, K));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 program to maximize the
# sum of absolute differences
# between adjacent elements
 
# Function for maximising the sum
def maxAdjacentDifference(N, K):
 
    # Difference is 0 when only
    # one element is present
    # in array
    if (N == 1):
        return 0;
     
    # Difference is K when
    # two elements are
    # present in array
    if (N == 2):
        return K;
     
    # Otherwise
    return 2 * K;
 
# Driver code
N = 6;
K = 11;
print(maxAdjacentDifference(N, K));
 
# This code is contributed by Code_Mech


C#




// C# program to maximize the
// sum of absolute differences
// between adjacent elements
using System;
 
class GFG{
 
// Function for maximising the sum
static int maxAdjacentDifference(int N, int K)
{
     
    // Difference is 0 when only
    // one element is present
    // in array
    if (N == 1)
    {
        return 0;
    }
 
    // Difference is K when
    // two elements are
    // present in array
    if (N == 2)
    {
        return K;
    }
 
    // Otherwise
    return 2 * K;
}
 
// Driver code
public static void Main(String[] args)
{
    int N = 6;
    int K = 11;
 
    Console.Write(maxAdjacentDifference(N, K));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program to maximize the
// sum of absolute differences
// between adjacent elements
 
// Function for maximising the sum
function maxAdjacentDifference(N, K)
{
       
    // Difference is 0 when only
    // one element is present
    // in array
    if (N == 1)
    {
        return 0;
    }
   
    // Difference is K when
    // two elements are
    // present in array
    if (N == 2)
    {
        return K;
    }
   
    // Otherwise
    return 2 * K;
}
  
// Driver Code
 
    let N = 6;
    let K = 11;
   
    document.write(maxAdjacentDifference(N, K));
 
// This code is contributed by susmitakundugoaldanga.
</script>


Output: 

22

 

Time Complexity: O(1).
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32352 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6720 POSTS0 COMMENTS
Nicole Veronica
11885 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6840 POSTS0 COMMENTS
Ted Musemwa
7104 POSTS0 COMMENTS
Thapelo Manthata
6795 POSTS0 COMMENTS
Umr Jansen
6794 POSTS0 COMMENTS