Wednesday, January 15, 2025
Google search engine
HomeData Modelling & AIMaximize sum by selecting M elements from the start or end of...

Maximize sum by selecting M elements from the start or end of rows of a Matrix

Given a 2D array Blocks[][] consisting of N rows of variable length. The task is to select at most M elements with the maximum possible sum from Blocks[][] from either the start or end of a row.

Examples:

Input: N = 3, M = 4
            Blocks[][] = {{2, 3, 5}, {-1, 7}, {8, 10}}
Output: 30
Explanation: 
Select {5} from 1st row.
Select {7} from 2nd row.
Select {8, 10} from 3rd row.

Input: N = 3, M = 2 
            Blocks[][] = {{100, 3, -1}, {-1, 7, 10}, {8, 10, 15}}
Output: 115
Explanation: 
select {100} from 1st row.
Skip 2nd row.
Select {15} from 3rd row.

Naive Approach: The simplest approach is to iterate through all the rows of the matrix and push all the elements into a vector and sort it. Calculate the sum of the last M elements and print it as the required answer.

Time Complexity: O(N * KlogK), where K is the maximum size any block can have.
Auxiliary Space: O(N * K)

Efficient Approach: To optimize the above approach, the idea is to use Dynamic Programming using Memoization. Follow the steps below:

  • Given N rows and from each row, select any segment from the ith row, say from l to r.
  • The count of elements in ith row is (r – l + 1) and proceed to the next row.
  • To calculate the maximum sum, use the prefix sum technique in order to calculate the sum.
  • Initialize a 2D array dp[][], where dp[N][M] stores the maximum sum by selecting at most M elements from N rows.
    • Consider the following two scenarios:
      • Either skip the current row.
      • Select any segment from the current row that does not exceed the number of elements selected.

Below is the implementation of the above approach:

C++14




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to select m elements
// having maximum sum
long mElementsWithMaxSum(vector<vector<int> > matrix,
                         int M, int block,
                         vector<vector<int> > dp)
{
     
    // Base case
    if (block == matrix.size())
        return 0;
 
    // If precomputed subproblem occurred
    if (dp[block][M] != -1)
        return dp[block][M];
 
    // Either skip the current row
    long ans = mElementsWithMaxSum(matrix, M,
                                   block + 1, dp);
 
    // Iterate through all the possible
    // segments of current row
    for(int i = 0;
            i < matrix[block].size(); i++)
    {
        for(int j = i;
                j < matrix[block].size(); j++)
        {
 
            // Check if it is possible to select
            // elements from i to j
            if (j - i + 1 <= M)
            {
                 
                // Compute the sum of i to j as
                // calculated
                ans = max(ans, matrix[block][j] -
                         ((i - 1) >= 0 ?
                         matrix[block][i - 1] : 0) +
                         mElementsWithMaxSum(matrix,
                                             M - j +
                                             i - 1,
                                         block + 1, dp));
            }
        }
    }
 
    // Store the computed answer and return
    return dp[block][M] = ans;
}
 
// Function to precompute the prefix sum
// for every row of the matrix
void preComputing(vector<vector<int>> matrix,
                  int N)
{
     
    // Preprocessing to calculate sum from i to j
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < matrix[i].size(); j++)
        {
            matrix[i][j] = (j > 0 ?
                  matrix[i][j - 1] : 0) +
                  matrix[i][j];
        }
    }
}
 
// Utility function to select m elements having
// maximum sum
void mElementsWithMaxSumUtil(vector<vector<int>> matrix,
                             int M, int N)
{
     
    // Preprocessing step
    preComputing(matrix, N);
    long sum = 10;
     
    // Initialize dp array with -1
    vector<vector<int>> dp;
    dp.resize(N + 5);
    for(int i = 0; i < N + 5; i++)
        for(int j = 0; j < M + 5; j++)
            dp[i].push_back(-1);
 
    // Stores maximum sum of M elements
     sum += mElementsWithMaxSum(matrix, M,
                                0, dp);
     
    cout << sum;
}
 
// Driver Code
int main()
{
     
    // Given N
    int N = 3;
 
    // Given M
    int M = 4;
 
    // Given matrix
    vector<vector<int>> matrix = { { 2, 3, 5 },
                                   { -1, 7 },
                                   { 8, 10 } };
 
    // Function call
    mElementsWithMaxSumUtil(matrix, M, N);
}
 
// This code is contributed by grand_master


Java




// Java program for the above approach
 
import java.util.*;
public class GFG {
 
    // Function to select m elements
    // having maximum sum
    public static long
    mElementsWithMaxSum(long[][] matrix,
                        int M, int block,
                        long[][] dp)
    {
        // Base case
        if (block == matrix.length)
            return 0;
 
        // If precomputed subproblem occurred
        if (dp[block][M] != -1)
            return dp[block][M];
 
        // Either skip the current row
        long ans
            = mElementsWithMaxSum(matrix, M,
                                block + 1, dp);
 
        // Iterate through all the possible
        // segments of current row
        for (int i = 0;
            i < matrix[block].length; i++) {
            for (int j = i;
                j < matrix[block].length; j++) {
 
                // Check if it is possible to select
                // elements from i to j
                if (j - i + 1 <= M) {
 
                    // Compute the sum of i to j as
                    // calculated
                    ans = Math.max(
                        ans,
                        matrix[block][j]
                            - ((i - 1) >= 0
                            ? matrix[block][i - 1]
                            : 0)
                            + mElementsWithMaxSum(
                                matrix, M - j + i - 1,
                                block + 1, dp));
                }
            }
        }
 
        // Store the computed answer and return
        return dp[block][M] = ans;
    }
 
    // Function to precompute the prefix sum
    // for every row of the matrix
    public static void
    preComputing(long[][] matrix, int N)
    {
        // Preprocessing to calculate sum from i to j
        for (int i = 0;
            i < N; i++) {
            for (int j = 0;
                j < matrix[i].length; j++) {
                matrix[i][j]
                    = (j > 0
                    ? matrix[i][j - 1] : 0)
                    + matrix[i][j];
            }
        }
    }
 
    // Utility function to select m elements having
    // maximum sum
    public static void
    mElementsWithMaxSumUtil(long[][] matrix,
                            int M, int N)
    {
        // Preprocessing step
        preComputing(matrix, N);
 
        // Initialize dp array with -1
        long dp[][] = new long[N + 5][M + 5];
        for (long i[] : dp)
            Arrays.fill(i, -1);
 
        // Stores maximum sum of M elements
        long sum = mElementsWithMaxSum(matrix, M,
                                    0, dp);
 
        // Print the sum
        System.out.print(sum);
    }
 
    // Driver Code
    public static void main(String args[])
    {
        // Given N
        int N = 3;
 
        // Given M
        int M = 4;
 
        // Given matrix
        long[][] matrix
            = { { 2, 3, 5 }, { -1, 7 },
                { 8, 10 } };
 
        // Function Call
        mElementsWithMaxSumUtil(matrix, M, N);
    }
}


Python3




# Python3 program for the above approach
 
# Function to select m elements
# having maximum sum
def mElementsWithMaxSum(matrix, M, block, dp):
     
    # Base case
    if block == len(matrix):
        return 0
 
    # If precomputed subproblem occurred
    if (dp[block][M] != -1):
        return dp[block][M]
 
    # Either skip the current row
    ans = mElementsWithMaxSum(matrix, M,
                              block + 1, dp)
 
    # Iterate through all the possible
    # segments of current row
    for i in range(len(matrix[block])):
        for j in range(i, len(matrix[block])):
             
            # Check if it is possible to select
            # elements from i to j
            if (j - i + 1 <= M):
                 
                # Compute the sum of i to j as
                # calculated
                x = 0
                if i - 1 >= 0:
                    x = matrix[block][i - 1]
                     
                ans = max(ans, matrix[block][j] - x +
                               mElementsWithMaxSum(matrix,
                                                   M - j +
                                                   i - 1,
                                               block + 1, dp))
 
    # Store the computed answer and return
    dp[block][M] = ans
     
    return ans
 
# Function to precompute the prefix sum
# for every row of the matrix
def preComputing(matrix, N):
     
    # Preprocessing to calculate sum from i to j
    for i in range(N):
        for j in range(len(matrix[i])):
            if j > 0:
                matrix[i][j] = matrix[i][j - 1]
                 
    return matrix
 
# Utility function to select m elements having
# maximum sum
def mElementsWithMaxSumUtil(matrix, M, N):
     
    # Preprocessing step
    matrix = preComputing(matrix, N)
    sum = 20
 
    # Initialize dp array with -1
    dp = [[-1 for i in range(M + 5)]
              for i in range(N + 5)]
 
    # Stores maximum sum of M elements
    sum += mElementsWithMaxSum(matrix, M, 0, dp)
 
    print(sum)
 
# Driver Code
if __name__ == '__main__':
     
    # Given N
    N = 3
 
    # Given M
    M = 4
 
    # Given matrix
    matrix = [ [ 2, 3, 5 ],
               [ -1, 7 ],
               [ 8, 10 ] ]
 
    # Function call
    mElementsWithMaxSumUtil(matrix, M, N)
 
# This code is contributed by mohit kumar 29


C#




// C# program for
// the above approach
using System;
class GFG{
 
// Function to select m elements
// having maximum sum
public static int mElementsWithMaxSum(int[,] matrix,
                                    int M, int block,
                                    int[,] dp)
{
// Base case
if (block == matrix.GetLength(0))
    return 0;
 
// If precomputed subproblem occurred
if (dp[block, M] != -1)
    return dp[block, M];
 
// Either skip the current row
int ans = mElementsWithMaxSum(matrix, M,
                                block + 1, dp);
 
// Iterate through all the possible
// segments of current row
for (int i = 0;
        i < GetRow(matrix, block).Length; i++)
{
    for (int j = i;
            j < GetRow(matrix, block).Length; j++)
    {
    // Check if it is possible to select
    // elements from i to j
    if (j - i + 1 <= M)
    {
        // Compute the sum of i to j as
        // calculated
        ans = Math.Max(ans, matrix[block, j] -
                                ((i - 1) >= 0 ?
                            matrix[block, i - 1] : 0) +
                            mElementsWithMaxSum(matrix,
                                                M - j + i - 1,
                                                block + 1, dp));
    }
    }
}
 
// Store the computed answer and return
return dp[block, M] = ans;
}
 
// Function to precompute the prefix sum
// for every row of the matrix
public static void preComputing(int[,] matrix,
                                int N)
{
// Preprocessing to calculate sum from i to j
for (int i = 0; i < N; i++)
{
    for (int j = 0;
            j < GetRow(matrix, i).Length; j++)
    {
    matrix[i, j] = (j > 0 ? matrix[i, j - 1] : 0) +
                            matrix[i, j];
    }
}
}
 
// Utility function to select
// m elements having maximum sum
public static void mElementsWithMaxSumUtil(int[,] matrix,
                                        int M, int N)
{
// Preprocessing step
preComputing(matrix, N);
 
// Initialize dp array with -1
int [,]dp = new int[N + 5, M + 5];
for(int i = 0; i < N + 5; i++)
{
    for (int j = 0; j < M + 5; j++)
    {
    dp[i, j] = -1;
    }
}
 
// Stores maximum sum of M elements
int sum = mElementsWithMaxSum(matrix, M,
                                0, dp);
 
// Print the sum
Console.Write(sum);
}
 
public static int[] GetRow(int[,] matrix,
                        int row)
{
var rowLength = matrix.GetLength(1);
var rowVector = new int[rowLength];
 
for (var i = 0; i < rowLength; i++)
    rowVector[i] = matrix[row, i];
 
return rowVector;
}
 
// Driver Code
public static void Main(String []args)
{
// Given N
int N = 3;
 
// Given M
int M = 4;
 
// Given matrix
int[,] matrix = {{2, 3, 5},
                {-1, 7,0},
                {8, 10, 0}};
 
// Function Call
mElementsWithMaxSumUtil(matrix, M, N);
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to select m elements
// having maximum sum
function mElementsWithMaxSum(matrix, M,  block, dp)
{
     
    // Base case
    if (block == matrix.length)
        return 0;
 
    // If precomputed subproblem occurred
    if (dp[block][M] != -1)
        return dp[block][M];
 
    // Either skip the current row
    var ans = mElementsWithMaxSum(matrix, M,
                                   block + 1, dp);
 
    // Iterate through all the possible
    // segments of current row
    for(var i = 0;
            i < matrix[block].length; i++)
    {
        for(var j = i;
                j < matrix[block].length; j++)
        {
 
            // Check if it is possible to select
            // elements from i to j
            if (j - i + 1 <= M)
            {
                 
                // Compute the sum of i to j as
                // calculated
                ans = Math.max(ans, matrix[block][j] -
                         ((i - 1) >= 0 ?
                         matrix[block][i - 1] : 0) +
                         mElementsWithMaxSum(matrix,
                                             M - j +
                                             i - 1,
                                         block + 1, dp));
            }
        }
    }
 
    // Store the computed answer and return
    return dp[block][M] = ans;
}
 
// Function to precompute the prefix sum
// for every row of the matrix
function preComputing(matrix, N)
{
     
    // Preprocessing to calculate sum from i to j
    for(var i = 0; i < N; i++)
    {
        for(var j = 0; j < matrix[i].length; j++)
        {
            matrix[i][j] = (j > 0 ?
                  matrix[i][j - 1] : 0) +
                  matrix[i][j];
        }
    }
}
 
// Utility function to select m elements having
// maximum sum
function mElementsWithMaxSumUtil(matrix, M, N)
{
     
    // Preprocessing step
    preComputing(matrix, N);
     
    // Initialize dp array with -1
    var dp = Array.from(Array(N+5), ()=> Array(M+5).fill(-1));
 
    // Stores maximum sum of M elements
    var sum = mElementsWithMaxSum(matrix, M,
                                0, dp);
     
    document.write( sum);
}
 
// Driver Code
// Given N
var N = 3;
// Given M
var M = 4;
// Given matrix
var matrix = [ [ 2, 3, 5 ],
                               [ -1, 7 ],
                               [ 8, 10 ] ];
// Function call
mElementsWithMaxSumUtil(matrix, M, N);
 
// This code is contributed by noob2000.
</script>


Output: 

30

 

Time Complexity: O(N * M)
Auxiliary Space: O(N * M)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments