Given an undirected graph of N nodes and M vertices. You are also given a K edges as selected[]. The task to maximize the shortest path length between node 1 to node N by adding single edges between any two vertices from the given selected edges.
Note: You may add an edge between any two selected vertices who have already an edge between them.
Input: N = 5, M = 4, K = 2, selected[] = {2, 4}
Below is the given graph:
Output: 3
Explanation:
Before adding an edge between 2 and 4, the Shortest Path becomes: 1–>2–>3–>4–>5.
After adding an edge between 2 and 4, the Shortest Path becomes 1–>2–>4–>5. Below is the graph after adding edges. denoted by the dashed line.
Input: N = 5 M = 5 K = 3 selected[] = {1, 3, 5}
Below is the given graph:
Output: 3
Explanation:
We can add an edge between 3 and 5 as they have already an edge between them. so, the shortest path becomes 1–>2–>3–>5. Below is the graph after adding edges. denoted by the dashed line.
Approach: The idea is to use Breadth-First Search to find the distance from vertices 1 and N to each selected vertex. For selected vertex i, let xi denote the distance to node 1, and yi denote the distance to node N. Below are the steps:
- Maintain a 2D matrix(say dist[2][]) having 2 rows and N columns.
- In the first row, Maintain the shortest distance between node 1 and other vertices in the graph using BFS Traversal.
- In the second row, Maintain the shortest distance between node N and the other vertices of the graph using BFS Traversal.
- Now, choose two selected vertices a and b from selected[] to minimize the value of min(xa + yb, ya + xb). For this do the following:
- Create a vector of pairs and store the value of (xi – yi) with their respective selected node.
- Sort the above vector of pairs.
- Initialize best to 0 and max to -INF.
- Now traverse the above vector of pairs and for each selected node(say a) update the value of best to maximum of (best, max + dist[1][a]) and update max to maximum of (max, dist[0][a]).
- After the above operations the maximum of (dist[0][N-1] and best + 1) given the minimum shortest path.
Below is the implementation of the above approach:
C++
// C++ program for the above approach#include <bits/stdc++.h>using namespace std;const int INF = 1e9 + 7;int N, M;// To store graph as adjacency listvector<int> edges[200005];// To store the shortest pathint dist[2][200000];// Function that performs BFS Traversalvoid bfs(int* dist, int s){ int q[200000]; // Fill initially each distance as INF fill(dist, dist + N, INF); int qh = 0, qt = 0; q[qh++] = s; dist[s] = 0; // Perform BFS while (qt < qh) { int x = q[qt++]; // Traverse the current edges for (int y : edges[x]) { if (dist[y] == INF) { // Update the distance dist[y] = dist[x] + 1; // Insert in queue q[qh++] = y; } } }}// Function that maximizes the shortest// path between source and destination// vertex by adding a single edge between// given selected nodesvoid shortestPathCost(int selected[], int K){ vector<pair<int, int> > data; // To update the shortest distance // between node 1 to other vertices bfs(dist[0], 0); // To update the shortest distance // between node N to other vertices bfs(dist[1], N - 1); for (int i = 0; i < K; i++) { // Store the values x[i] - y[i] data.emplace_back(dist[0][selected[i]] - dist[1][selected[i]], selected[i]); } // Sort all the vectors of pairs sort(data.begin(), data.end()); int best = 0; int MAX = -INF; // Traverse data[] for (auto it : data) { int a = it.second; best = max(best, MAX + dist[1][a]); // Maximize x[a] - y[b] MAX= max(MAX, dist[0][a]); } // Print minimum cost printf("%d\n", min(dist[0][N - 1], best + 1));}// Driver Codeint main(){ // Given nodes and edges N = 5, M = 4; int K = 2; int selected[] = { 1, 3 }; // Sort the selected nodes sort(selected, selected + K); // Given edges edges[0].push_back(1); edges[1].push_back(0); edges[1].push_back(2); edges[2].push_back(1); edges[2].push_back(3); edges[3].push_back(2); edges[3].push_back(4); edges[4].push_back(3); // Function Call shortestPathCost(selected, K); return 0;} |
Java
// Java program for the above approachimport java.util.*;import java.lang.*;class GFG{ static int INF = (int)1e9 + 7; static int N, M; // To store graph as adjacency list static ArrayList<ArrayList<Integer>> edges; // To store the shortest path static int[][] dist = new int[2][200000]; // Function that performs BFS Traversal static void bfs(int[] dist, int s) { int[] q = new int[200000]; // Fill initially each distance as INF Arrays.fill(dist, INF); int qh = 0, qt = 0; q[qh++] = s; dist[s] = 0; // Perform BFS while (qt < qh) { int x = q[qt++]; // Traverse the current edges for(Integer y : edges.get(x)) { if (dist[y] == INF) { // Update the distance dist[y] = dist[x] + 1; // Insert in queue q[qh++] = y; } } } } // Function that maximizes the shortest // path between source and destination // vertex by adding a single edge between // given selected nodes static void shortestPathCost(int selected[], int K) { ArrayList<int[]> data = new ArrayList<>(); // To update the shortest distance // between node 1 to other vertices bfs(dist[0], 0); // To update the shortest distance // between node N to other vertices bfs(dist[1], N - 1); for(int i = 0; i < K; i++) { // Store the values x[i] - y[i] data.add(new int[]{dist[0][selected[i]] - dist[1][selected[i]], selected[i]}); } // Sort all the vectors of pairs Collections.sort(data, (a, b) -> a[0] - b[0]); int best = 0; int MAX = -INF; // Traverse data[] for(int[] it : data) { int a = it[1]; best = Math.max(best, MAX + dist[1][a]); // Maximize x[a] - y[b] MAX = Math.max(MAX, dist[0][a]); } // Print minimum cost System.out.println(Math.min(dist[0][N - 1], best + 1)); }// Driver codepublic static void main (String[] args){ // Given nodes and edges N = 5; M = 4; int K = 2; int selected[] = { 1, 3 }; // Sort the selected nodes Arrays.sort(selected); edges = new ArrayList<>(); for(int i = 0; i < 200005; i++) edges.add(new ArrayList<Integer>()); // Given edges edges.get(0).add(1); edges.get(1).add(0); edges.get(1).add(2); edges.get(2).add(1); edges.get(2).add(3); edges.get(3).add(2); edges.get(3).add(4); edges.get(4).add(3); // Function Call shortestPathCost(selected, K); }}// This code is contributed by offbeat |
Python3
# Python3 program for the above approach# Function that performs BFS Traversaldef bfs(x, s): global edges, dist q = [0 for i in range(200000)] # Fill initially each distance as INF # fill(dist, dist + N, INF) qh, qt = 0, 0 q[qh] = s qh += 1 dist[x][s] = 0 # Perform BFS while (qt < qh): xx = q[qt] qt += 1 # Traverse the current edges for y in edges[xx]: if (dist[x][y] == 10**18): # Update the distance dist[x][y] = dist[x][xx] + 1 # Insert in queue q[qh] = y qh += 1# Function that maximizes the shortest# path between source and destination# vertex by adding a single edge between# given selected nodesdef shortestPathCost(selected, K): global dist, edges data = [] # To update the shortest distance # between node 1 to other vertices bfs(0, 0) # To update the shortest distance # between node N to other vertices bfs(1, N - 1) for i in range(K): # Store the values x[i] - y[i] data.append([dist[0][selected[i]]- dist[1][selected[i]], selected[i]]) # Sort all the vectors of pairs data = sorted(data) best = 0 MAX = -10**18 # Traverse data[] for it in data: a = it[1] best = max(best,MAX + dist[1][a]) # Maximize x[a] - y[b] MAX= max(MAX, dist[0][a]) # Print minimum cost print(min(dist[0][N - 1], best + 1))# Driver Codeif __name__ == '__main__': # Given nodes and edges edges = [[] for i in range(5)] dist = [[10**18 for i in range(1000005)] for i in range(2)] N,M = 5, 4 K = 2 selected = [1, 3] # Sort the selected nodes selected = sorted(selected) # Given edges edges[0].append(1) edges[1].append(0) edges[1].append(2) edges[2].append(1) edges[2].append(3) edges[3].append(2) edges[3].append(4) edges[4].append(3) # Function Call shortestPathCost(selected, K) # This code is contributed by mohit kumar 29 |
C#
using System;using System.Linq;class Program{ static int N, M, K; static int[][] edges, dist; static int[] selected;//Function that performs BFS Traversal static void BFS(int x, int s) { int[] q = new int[200000]; // //Fill initially each distance as INF //fill(dist, dist + N, INF) int qh = 0, qt = 0; q[qh] = s; qh++; dist[x][s] = 0;//Perform BFS while (qt < qh) { int xx = q[qt]; qt++; for (int i = 0; i < edges[xx].Length; i++) { int y = edges[xx][i]; if (dist[x][y] == int.MaxValue) { dist[x][y] = dist[x][xx] + 1; q[qh] = y; qh++; } } } } // Function that maximizes the shortest// path between source and destination// vertex by adding a single edge between// given selected nodes static void ShortestPathCost(int[] selected, int K) { BFS(0, 0); BFS(1, N - 1); Tuple<int, int>[] data = new Tuple<int, int>[K]; for (int i = 0; i < K; i++) { data[i] = Tuple.Create(dist[0][selected[i]] - dist[1][selected[i]], selected[i]); } Array.Sort(data, (a, b) => a.Item1.CompareTo(b.Item1)); int best = 0, MAX = int.MinValue; foreach (Tuple<int, int> it in data) { int a = it.Item2; best = Math.Max(best, MAX + dist[1][a]); MAX = Math.Max(MAX, dist[0][a]); } Console.WriteLine(Math.Min(dist[0][N - 1], best + 1)); }//Driver code static void Main(string[] args) { N = 5; M = 4; K = 2; selected = new int[] { 1, 3 }; Array.Sort(selected); edges = new int[5][]; edges[0] = new int[] { 1 }; edges[1] = new int[] { 0, 2 }; edges[2] = new int[] { 1, 3 }; edges[3] = new int[] { 2, 4 }; edges[4] = new int[] { 3 }; dist = new int[2][]; dist[0] = Enumerable.Repeat(int.MaxValue, 1000005).ToArray(); dist[1] = Enumerable.Repeat(int.MaxValue, 1000005).ToArray(); ShortestPathCost(selected, K); }} |
Javascript
<script>// Javascript program for the above approachlet INF = 1e9 + 7;let N, M;// To store graph as adjacency listlet edges=[];// To store the shortest pathlet dist=new Array(2);for(let i=0;i<2;i++){ dist[i]=new Array(200000); for(let j=0;j<200000;j++) { dist[i][j]=INF; }}// Function that performs BFS Traversalfunction bfs(dist,s){ let q = new Array(200000); // Fill initially each distance as INF let qh = 0, qt = 0; q[qh++] = s; dist[s] = 0; // Perform BFS while (qt < qh) { let x = q[qt++]; // Traverse the current edges for(let y=0;y< edges[x].length;y++) { if (dist[edges[x][y]] == INF) { // Update the distance dist[edges[x][y]] = dist[x] + 1; // Insert in queue q[qh++] = edges[x][y]; } } }}// Function that maximizes the shortest// path between source and destination// vertex by adding a single edge between// given selected nodes function shortestPathCost(selected,K){ let data = []; // To update the shortest distance // between node 1 to other vertices bfs(dist[0], 0); // To update the shortest distance // between node N to other vertices bfs(dist[1], N - 1); for(let i = 0; i < K; i++) { // Store the values x[i] - y[i] data.push([dist[0][selected[i]] - dist[1][selected[i]], selected[i]]); } // Sort all the vectors of pairs data.sort(function(a, b){return a[0] - b[0];}); let best = 0; let MAX = -INF; // Traverse data[] for(let it=0;it< data.length;it++) { let a = data[it][1]; best = Math.max(best, MAX + dist[1][a]); // Maximize x[a] - y[b] MAX = Math.max(MAX, dist[0][a]); } // Print minimum cost document.write(Math.min(dist[0][N - 1], best + 1));}// Driver code// Given nodes and edges N = 5; M = 4; let K = 2; let selected = [ 1, 3 ]; // Sort the selected nodes (selected).sort(function(a,b){return a-b;}); edges = []; for(let i = 0; i < 200005; i++) edges.push([]); // Given edges edges[0].push(1); edges[1].push(0); edges[1].push(2); edges[2].push(1); edges[2].push(3); edges[3].push(2); edges[3].push(4); edges[4].push(3); // Function Call shortestPathCost(selected, K);// This code is contributed by patel2127</script> |
3
Time Complexity: O(N*log N + M)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

