Given an array arr[] of size N, the task is to find 4 indices i, j, k, l such that 0 <= i, j, k, l < N and the value of arr[i]%arr[j] – arr[k]%arr[l] is maximum. Print the maximum difference. If it doesn’t exist, then print -1.
Examples:
Input: N=8, arr[] = {1, 2, 4, 6, 8, 3, 5, 7}
Output: 7
Explanation: Choosing elements 1, 2, 7, 8 and 2%1 – 7%8 gives the maximum result possible.Input: N=3, arr[] = {1, 50, 101}
Output: -1
Explanation: Since, there are 3 elements only so there’s no possible answer.
Naive Approach: The brute force idea would be to check all the possible combinations and then find the maximum difference.
Time Complexity: O(N4)
Auxiliary Space: O(1)
Efficient Approach: The idea is based on the observation that on sorting the array in ascending order, choose the first pair from the left-side, i.e, the minimum 2 values and the second pair from the right side, i.e, the maximum 2 values gives the answer. Further, arr[i+1]%arr[i] is always less than equal to arr[i]%arr[i+1]. So, minimize the first pair value and maximize the second pair value. Follow the steps below to solve the problem:
- If the size of the array is less than 4, then return -1.
- Sort the array arr[] in ascending order.
- Initialize the variable first as arr[1]%arr[0] and second as arr[N-2]%arr[N-1].
- After performing the above steps, print the value of second-first as the answer.
Below is the implementation of the above approach.
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the required // maximum difference void maxProductDifference(vector< int >& arr) { // Base Case if (arr.size() < 4) { cout << "-1\n" ; return ; } // Sort the array sort(arr.begin(), arr.end()); // First pair int first = arr[1] % arr[0]; // Second pair int second = arr[arr.size() - 2] % arr[arr.size() - 1]; // Print the result cout << second - first; return ; } // Driver Code int main() { vector< int > arr = { 1, 2, 4, 6, 8, 3, 5, 7 }; maxProductDifference(arr); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.Arrays; class GFG { // Function to find the required // maximum difference static void maxProductDifference( int [] arr) { // Base Case if (arr.length < 4 ) { System.out.println( "-1" ); return ; } // Sort the array Arrays.sort(arr); // First pair int first = arr[ 1 ] % arr[ 0 ]; // Second pair int second = arr[arr.length - 2 ] % arr[arr.length - 1 ]; // Print the result System.out.println(second - first); return ; } // Driver Code public static void main(String[] args) { int [] arr = { 1 , 2 , 4 , 6 , 8 , 3 , 5 , 7 }; maxProductDifference(arr); } } // This code is contributed by Potta Lokesh |
Python3
# python program for the above approach # Function to find the required # maximum difference def maxProductDifference(arr): # Base Case if ( len (arr) < 4 ): print ( "-1" ) return # Sort the array arr.sort() # First pair first = arr[ 1 ] % arr[ 0 ] # Second pair second = arr[ len (arr) - 2 ] % arr[ len (arr) - 1 ] # Print the result print (second - first) # Driver Code if __name__ = = "__main__" : arr = [ 1 , 2 , 4 , 6 , 8 , 3 , 5 , 7 ] maxProductDifference(arr) # This code is contributed by rakeshsahni |
C#
// C# program for the above approach using System; public class GFG { // Function to find the required // maximum difference static void maxProductDifference( int [] arr) { // Base Case if (arr.Length < 4) { Console.WriteLine( "-1" ); return ; } // Sort the array Array.Sort(arr); // First pair int first = arr[1] % arr[0]; // Second pair int second = arr[arr.Length - 2] % arr[arr.Length - 1]; // Print the result Console.WriteLine(second - first); return ; } // Driver Code public static void Main(String[] args) { int [] arr = { 1, 2, 4, 6, 8, 3, 5, 7 }; maxProductDifference(arr); } } // This code is contributed by shikhasingrajput |
Javascript
<script> // Javascript program for the above approach // Function to find the required // maximum difference function maxProductDifference(arr) { // Base Case if (arr.length < 4) { document.write( "-1<br>" ); return ; } // Sort the array arr.sort(); // First pair let first = arr[1] % arr[0]; // Second pair let second = arr[arr.length - 2] % arr[arr.length - 1]; // Print the result document.write(second - first); return ; } // Driver Code let arr = [1, 2, 4, 6, 8, 3, 5, 7]; maxProductDifference(arr); // This code is contributed by gfgking. </script> |
7
Time Complexity: O(N*log(N))
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!