Wednesday, January 8, 2025
Google search engine
HomeData Modelling & AIMaximize product obtained by taking one element from each array of a...

Maximize product obtained by taking one element from each array of a given list

Given a list arr[] consisting of arrays of varying lengths, the task is to find the maximum product that can be formed by taking exactly one element from each array present in the list.

Examples:

Input: arr[] = {{-3, -4}, {1, 2, -3}}
Output: 12
Explanation: 
Pick -4 from the first array and -3 from the second array.
Therefore, maximum possible product is 12.

Input: arr[] = {{1, -1}, {2, 3}, {10, -100, 20}}
Output: 300
Explanation:
Pick -1 from the first array and 3 from the second array and -100 from the third array.
Therefore, maximum product is 300.

Naive Approach: The simplest approach to solve this problem is to find each possible combination of elements by taking one element from each array of the list using Recursion and select the maximum product out of all possible combinations.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Stores the maximum product
int maximum = -INT_MAX;
  
// Function to find maximum product
// possible by taking exactly one element
// from each array of the list
void calculateProduct(vector<vector<int> > &List, 
                      int index, int product)
{
  
    // If last index is encountered
    if(index + 1 == List.size())
    {
        for (int i :List[index])
        {
            
            // Find the maximum product
            maximum = max(maximum, product *i);
        }
        
    // Otherwise, recursively calculate
    // maximum product for every element
    }
    else
    {
        for(int i: List[index])
            calculateProduct(List, index + 1, product * i);
      }
}
  
// Driver Code
  
// Count of given arrays
int main() 
{
 int N = 2;
  
 // Given list of N arrays
 vector<vector<int> > arr = {{-3, -4}, {1, 2, -3}};
  
  // Calculates the maximum
  // possible product
  calculateProduct(arr, 0, 1);
  
  // Print the maximum product
  cout << maximum;
  return 0;
}
  
// This code is contributed by mohit kumar 29


Java




// Java program for the  
// above approach 
import java.util.*; 
  
class GFG{ 
    
static int maximum = -Integer.MAX_VALUE;
  
// Function to find maximum product
// possible by taking exactly one element
// from each array of the list
static void calculateProduct(int[][] List, 
                             int index, 
                             int product)
{
      
    // If last index is encountered
    if (index + 1 == List.length)
    {
        for(int i:List[index])
        {
              
            // Find the maximum product
            maximum = Math.max(maximum, product * i);
        }
          
    // Otherwise, recursively calculate
    // maximum product for every element
    }
    else
    {
        for(int i:List[index])
            calculateProduct(List, index + 1,
                             product * i);
    }
}
    
// Driver Code 
public static void main(String[] args) 
    int N = 2;
      
    // Given list of N arrays
    int[][] arr = { { -3, -4 }, { 1, 2, -3 } };
      
    // Calculates the maximum
    // possible product
    calculateProduct(arr, 0, 1);
      
    // Print the maximum product
    System.out.print(maximum);
  
// This code is contributed by code_hunt


Python3




# Python program for the above approach
  
# Stores the maximum product
maximum = -float('INF')
  
# Function to find maximum product
# possible by taking exactly one element
# from each array of the list
def calculateProduct(List, index, product):
  
    # If last index is encountered
    if(index + 1 == len(List)):
  
        for i in List[index]:
            global maximum
  
            # Find the maximum product
            maximum = max(maximum, product * i)
  
    # Otherwise, recursively calculate
    # maximum product for every element
    else:
        for i in List[index]:
            calculateProduct(List, index + 1, product * i)
  
  
# Driver Code
  
# Count of given arrays
N = 2
  
# Given list of N arrays
arr = [[-3, -4], [1, 2, -3]]
  
# Calculates the maximum
# possible product
calculateProduct(arr, 0, 1)
  
# Print the maximum product
print(maximum)


C#




// C# program for the  
// above approach 
using System;
public class GFG{ 
    
static int maximum = -int.MaxValue;
  
// Function to find maximum product
// possible by taking exactly one element
// from each array of the list
static void calculateProduct(int[,] list, 
                             int index, 
                             int product)
{
      
    // If last index is encountered
    if (index + 1 == list.GetLength(0))
    {
        foreach(int i in GetRow(list,index))
        {
              
            // Find the maximum product
            maximum = Math.Max(maximum, product * i);
        }
          
    // Otherwise, recursively calculate
    // maximum product for every element
    }
    else
    {
        foreach(int i in GetRow(list,index))
            calculateProduct(list, index + 1,
                             product * i);
    }
}
public static int[] GetRow(int[,] matrix, int row)
  {
    var rowLength = matrix.GetLength(1);
    var rowVector = new int[rowLength];
  
    for (var i = 0; i < rowLength; i++)
    {
      rowVector[i] = matrix[row, i];
    }
  
    return rowVector;
  
    
// Driver Code 
public static void Main(String[] args) 
     
    // Given list of N arrays
    int[,] arr = { { -3, -4,0 }, { 1, 2, -3 } };
      
    // Calculates the maximum
    // possible product
    calculateProduct(arr, 0, 1);
      
    // Print the maximum product
    Console.Write(maximum);
  
// This code is contributed by 29AjayKumar


Javascript




<script>
  
// Javascript program for the above approach
  
// Stores the maximum product
var maximum = -1000000000;
  
// Function to find maximum product
// possible by taking exactly one element
// from each array of the list
function calculateProduct(List, index, product)
{
  
    // If last index is encountered
    if(index + 1 == List.length)
    {
        for(var i =0; i< List[index].length; i++)
        {
            
            // Find the maximum product
            maximum = Math.max
            (maximum, product *List[index][i]);
        }
        
    // Otherwise, recursively calculate
    // maximum product for every element
    }
    else
    {
        for(var i =0; i< List[index].length; i++)
            calculateProduct(List, index + 1, 
            product * List[index][i]);
      }
}
  
// Driver Code
  
// Count of given arrays
var N = 2;
  
// Given list of N arrays
var arr = [[-3, -4], [1, 2, -3]];
  
// Calculates the maximum
 // possible product
calculateProduct(arr, 0, 1);
  
// Print the maximum product
document.write( maximum);
  
  
</script>


Output: 

12

 

Time Complexity: O(2N)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above approach, the idea is to consider the lowest negative (if any) and highest positive (if any) numbers from each array to maximize the product. Follow the steps below to solve the problem:

  1. Traverse the list of arrays arr[].
  2. For every array in the list, say arr[index], find the maximum and minimum elements present in it.
  3. If the last index has been reached, return the maximum and minimum obtained as a pair.
  4. If the maximum value obtained is negative, set it to None. If the minimum value obtained is positive, set it to None
  5. Otherwise: 
    1. Recursively call to (index + 1), i.e., calculateProduct(list, index + 1) and store the result in [positive, negative].
    2. Find all combinations of maximum, minimum obtained in Step 1 with positive, negative found in step 3.1.
    3. Return the maximum positive and minimum negative formed among all the combinations.
  6. After completing the above steps, print the maximum product formed.

Below is the implementation of the above approach:

C++14




// CPP program for the above approach
#include<bits/stdc++.h>
using namespace std;
  
// Function to return the product of 2 numbers
int findProduct(int number_1, int number_2)
{
  
  // If any of the two numbers is None
  if(number_1 == INT_MIN or number_2 == INT_MIN)
    return 0;
  
  // Otherwise, return the product
  else
    return number_1 * number_2;
}
  
// Function to calculate maximum product
// by taking only one element from each
// array present in the list
pair<int,int> calculateProduct(vector<vector<int>> List,  int index)
{
  
  // Find the maximum and minimum
  // present in the current array
  int highest = *max_element(List[index].begin(),List[index].end());
  int lowest = *min_element(List[index].begin(),List[index].end());
  
  // If last index is reached, then
  // return the highest(positive)
  // and lowest(negative) values
  if(index + 1 == List.size()){
    if(lowest < 0 and highest >= 0)
      return {highest, lowest};
  
    else if(lowest <= 0 and highest <= 0)
      return {INT_MIN, lowest};
  
    else if(lowest >= 0 and highest >= 0)
      return {highest, INT_MIN};
  }
  
  
  // Store the positive and negative products
  // returned by calculating for the
  // remaining arrays
  pair<int,int> temp = calculateProduct(List, index + 1);
  int positive = temp.first;
  int negative = temp.second;
  
  // Calculate for all combinations of
  // highest, lowest with positive, negative
  
  // Store highest positive product
  int highPos = findProduct(highest, positive);
  
  // Store product of highest with negative
  int highNeg = findProduct(highest, negative);
  
  // Store product of lowest with positive
  int lowPos = findProduct(lowest, positive);
  
  // Store lowest negative product
  int lowNeg = findProduct(lowest, negative);
  
  // Return the maximum positive and
  // minimum negative product
  if(lowest < 0 and highest >= 0)
    return {max(highPos, lowNeg), min(highNeg, lowPos)};
  
  else if(lowest <= 0 and highest <= 0)
    return {lowNeg, lowPos};
  
  else if(lowest >= 0 and highest >= 0)
    return {max(lowPos, highPos), min(lowNeg, highNeg)};
  
}
  
  
// Driver Code
  
int main()
{
  
  // Count of given arrays
  int N = 2;
  
  // Given list of N arrays
  vector<vector<int>>arr{{-3, -4}, {1, 2, -3}};
  
  // Store the maximum positive and
  // minimum negative product possible
  pair<int,int> ans = calculateProduct(arr, 0);
  
  // Print the maximum product
  cout<<ans.first<<endl; 
}
  
// This code is contributed by SURENDRA_GANGWAR.


Java




// Java program for the above approach
import java.io.*;
import java.util.*;
class GFG
{
      
    // Function to return the product of 2 numbers
    static int findProduct(int number_1, int number_2)
    {
        
        // If any of the two numbers is None
        if(number_1 == Integer.MIN_VALUE || number_2 == Integer.MIN_VALUE)
        {
            return 0;
        }
        
        // Otherwise, return the product
        else
            return number_1 * number_2;
    }
      
    // Function to calculate maximum product
    // by taking only one element from each
    // array present in the list
    static ArrayList<Integer> calculateProduct(ArrayList<ArrayList<Integer>> List,  int index)
    {
        
        // Find the maximum and minimum
        // present in the current array
        int highest = Collections.max(List.get(index));
        int lowest = Collections.min(List.get(index));
          
        // If last index is reached, then
        // return the highest(positive)
        // and lowest(negative) values
        if(index + 1 == List.size())
        {
            if(lowest < 0 && highest >= 0)
            {
                return (new ArrayList<Integer>(Arrays.asList(highest, lowest)));
            }
            else if(lowest <= 0 && highest <= 0)
            {
                return (new ArrayList<Integer>(Arrays.asList(Integer.MIN_VALUE, lowest)));
            }
            else if(lowest >= 0 && highest >= 0)
            {
                return (new ArrayList<Integer>(Arrays.asList(highest,Integer.MIN_VALUE)));
            }
        }
          
        // Store the positive and negative products
        // returned by calculating for the
        // remaining arrays
        ArrayList<Integer> temp = calculateProduct(List, index + 1);
        int positive = temp.get(0);
        int negative = temp.get(1);
          
        // Calculate for all combinations of
        // highest, lowest with positive, negative
   
        // Store highest positive product
        int highPos = findProduct(highest, positive);
          
        // Store product of highest with negative
        int highNeg = findProduct(highest, negative);
          
        // Store product of lowest with positive
        int lowPos = findProduct(lowest, positive);
          
        // Store lowest negative product
        int lowNeg = findProduct(lowest, negative);
          
        // Return the maximum positive and
        // minimum negative product
        if(lowest < 0 && highest >= 0)
        {
            return (new ArrayList<Integer>(Arrays.asList(Math.max(highPos, lowNeg), Math.min(highNeg, lowPos))));
        }
        else if(lowest <= 0 && highest <= 0)
        {
           return (new ArrayList<Integer>(Arrays.asList(lowNeg, lowPos)));
        }
        else if(lowest >= 0 && highest >= 0)
        {
            return (new ArrayList<Integer>(Arrays.asList(Math.max(lowPos, highPos), Math.min(lowNeg, highNeg))));
        }
          
        return (new ArrayList<Integer>(Arrays.asList(0,0)));
    }
      
    // Driver Code
    public static void main (String[] args) {
          
        // Count of given arrays
        int N = 2;
          
        // Given list of N arrays
        ArrayList<ArrayList<Integer>> arr = new ArrayList<ArrayList<Integer>>();
        arr.add(new ArrayList<Integer>(Arrays.asList(-3, -4)));
        arr.add(new ArrayList<Integer>(Arrays.asList(1, 2, -3)));
          
        // Store the maximum positive and
        // minimum negative product possible
        ArrayList<Integer> ans = calculateProduct(arr, 0);
          
        // Print the maximum product
        System.out.println(ans.get(0));
    }
}
  
// This code is contributed by avanitrachhadiya2155


Python3




# Python program for the above approach
  
# Function to return the product of 2 numbers
def findProduct(number_1, number_2):
  
    # If any of the two numbers is None
    if(number_1 == None or number_2 == None):
        return 0
  
    # Otherwise, return the product
    else:
        return number_1 * number_2
  
# Function to calculate maximum product
# by taking only one element from each
# array present in the list
def calculateProduct(List, index):
  
    # Find the maximum and minimum
    # present in the current array
    highest = max(List[index])
    lowest = min(List[index])
  
    # If last index is reached, then
    # return the highest(positive)
    # and lowest(negative) values
    if(index + 1 == len(List)):
        if(lowest < 0 and highest >= 0):
            return [highest, lowest]
  
        elif(lowest <= 0 and highest <= 0):
            return [None, lowest]
  
        elif(lowest >= 0 and highest >= 0):
            return [highest, None]
  
    # Store the positive and negative products
    # returned by calculating for the
    # remaining arrays
    [positive, negative] = calculateProduct(List, index + 1)
  
    # Calculate for all combinations of
    # highest, lowest with positive, negative
  
    # Store highest positive product
    highPos = findProduct(highest, positive)
  
    # Store product of highest with negative
    highNeg = findProduct(highest, negative)
  
    # Store product of lowest with positive
    lowPos = findProduct(lowest, positive)
  
    # Store lowest negative product
    lowNeg = findProduct(lowest, negative)
  
    # Return the maximum positive and
    # minimum negative product
    if(lowest < 0 and highest >= 0):
        return [max(highPos, lowNeg), min(highNeg, lowPos)]
  
    elif(lowest <= 0 and highest <= 0):
        return [lowNeg, lowPos]
  
    elif(lowest >= 0 and highest >= 0):
        return [max(lowPos, highPos), min(lowNeg, highNeg)]
  
  
# Driver Code
  
# Count of given arrays
N = 2
  
# Given list of N arrays
arr = [[-3, -4], [1, 2, -3]]
  
# Store the maximum positive and
# minimum negative product possible
positive, negative = calculateProduct(arr, 0)
  
# Print the maximum product
print(positive)


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
  
public class GFG
{
  
  // Function to return the product of 2 numbers
  static int findProduct(int number_1, int number_2)
  {
  
    // If any of the two numbers is None
    if(number_1 == Int32.MinValue || number_2 == Int32.MinValue)
    {
      return 0;
    }
  
    // Otherwise, return the product
    else
      return number_1 * number_2;
  }
  
  // Function to calculate maximum product
  // by taking only one element from each
  // array present in the list
  static List<int> calculateProduct(List<List<int>> List,  int index)
  {
  
    // Find the maximum and minimum
    // present in the current array
    int highest = List[index].Max();
    int lowest = List[index].Min();
  
    // If last index is reached, then
    // return the highest(positive)
    // and lowest(negative) values
    if(index + 1 == List.Count)
    {
      if(lowest < 0 && highest >= 0)
      {
        return (new List<int>(){highest,lowest});
      }
      else if(lowest <= 0 && highest <= 0)
      {
        return (new List<int>(){Int32.MinValue, lowest});
      }
      else if(lowest >= 0 && highest >= 0)
      {
        return (new List<int>(){highest, Int32.MinValue});
      }
    }
  
    // Store the positive and negative products
    // returned by calculating for the
    // remaining arrays
    List<int> temp = calculateProduct(List, index + 1);
    int positive = temp[0];
    int negative = temp[1];
  
    // Calculate for all combinations of
    // highest, lowest with positive, negative
  
    // Store highest positive product
    int highPos = findProduct(highest, positive);
  
    // Store product of highest with negative
    int highNeg = findProduct(highest, negative);
  
    // Store product of lowest with positive
    int lowPos = findProduct(lowest, positive);
  
    // Store lowest negative product
    int lowNeg = findProduct(lowest, negative);
  
    // Return the maximum positive and
    // minimum negative product
    if(lowest < 0 && highest >= 0)
    {
      return (new List<int>(){Math.Max(highPos, lowNeg), Math.Min(highNeg, lowPos)});
    }
    else if(lowest <= 0 && highest <= 0)
    {
      return (new List<int>(){lowNeg, lowPos});
    }
    else if(lowest >= 0 && highest >= 0)
    {
      return (new List<int>(){Math.Max(lowPos, highPos), Math.Min(lowNeg, highNeg)});
    }
  
    return (new List<int>(){0,0});
  }
  
  // Driver Code
  static public void Main ()
  {
  
    // Given list of N arrays
    List<List<int>> arr = new List<List<int>>();
    arr.Add(new List<int>(){-3, -4});
    arr.Add(new List<int>(){1, 2, -3});
  
    // Store the maximum positive and
    // minimum negative product possible
    List<int> ans = calculateProduct(arr, 0);
  
    // Print the maximum product
    Console.WriteLine(ans[0]);
  }
}
  
// This code is contributed by rag2127.


Javascript




<script>
  
// JavaScript program for the above approach
  
// Function to return the product of 2 numbers
function findProduct(number_1,number_2)
{
    // If any of the two numbers is None
        if(number_1 == Number.MIN_VALUE || 
           number_2 == Number.MIN_VALUE)
        {
            return 0;
        }
         
        // Otherwise, return the product
        else
            return number_1 * number_2;
}
  
 // Function to calculate maximum product
// by taking only one element from each
// array present in the list
function calculateProduct(List,index)
{
    // Find the maximum and minimum
   // present in the current array
        let highest = Math.max(...List[index]);
        let lowest = Math.min(...List[index]);
           
        // If last index is reached, then
        // return the highest(positive)
        // and lowest(negative) values
        if(index + 1 == List.length)
        {
            if(lowest < 0 && highest >= 0)
            {
                return ([highest, lowest]);
            }
            else if(lowest <= 0 && highest <= 0)
            {
                return ([Number.MIN_VALUE, lowest]);
            }
            else if(lowest >= 0 && highest >= 0)
            {
                return ([highest,Number.MIN_VALUE]);
            }
        }
           
        // Store the positive and negative products
        // returned by calculating for the
        // remaining arrays
        let temp = calculateProduct(List, index + 1);
        let positive = temp[0];
        let negative = temp[1];
           
        // Calculate for all combinations of
        // highest, lowest with positive, negative
    
        // Store highest positive product
        let highPos = findProduct(highest, positive);
           
        // Store product of highest with negative
        let highNeg = findProduct(highest, negative);
           
        // Store product of lowest with positive
        let lowPos = findProduct(lowest, positive);
           
        // Store lowest negative product
        let lowNeg = findProduct(lowest, negative);
           
        // Return the maximum positive and
        // minimum negative product
        if(lowest < 0 && highest >= 0)
        {
            return ([(Math.max(highPos, lowNeg)), Math.min(highNeg, 
            lowPos)]);
        }
        else if(lowest <= 0 && highest <= 0)
        {
           return ([lowNeg, lowPos]);
        }
        else if(lowest >= 0 && highest >= 0)
        {
            return ([(Math.max(lowPos, highPos)), Math.min(lowNeg, 
            highNeg)]);
        }
           
        return ([0,0]);
}
  
// Driver Code
// Count of given arrays
let N = 2;
// Given list of N arrays
let arr = [[-3, -4],[1, 2, -3]];
  
// Store the maximum positive and
        // minimum negative product possible
let ans = calculateProduct(arr, 0);
// Print the maximum product
document.write(ans[0]);
  
  
// This code is contributed by patel2127
  
</script>


Output: 

12

 

Time Complexity: O(N*length(array))
Auxiliary Space: O(1)

Last Updated :
24 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments