Given an array A[] of N integers and an integer K, the task is to select the maximum number of elements from the array whose sum is at most K.
Examples:
Input: A[] = {1, 12, 5, 111, 200, 1000, 10}, K = 50
Output: 4
Explanation:
Maximum number of selections will be 1, 12, 5, 10 that is 1 + 12 + 5 + 10 = 28 < 50.Input: A[] = {3, 7, 2, 9, 4}, K = 15
Output: 3
Explanation:
Maximum number of selections will be 3, 2, 4 that is 3 + 2 + 4 =9 < 15.
Naive Approach: The idea is to generate all possible subsequences of the array and find the sum of elements of all the subsequences generated. Find the subsequence with maximum length and with the sum less than or equal to K. 
Time Complexity: O(2N) 
Auxiliary Space: (1)
 
Efficient Approach: The efficient approach can be solved using the Greedy Technique. Below are the steps:
- Sort the given array.
- Iterate in the array and keep the track of the sum of elements until the sum is less than or equal to K.
- If the sum while iterating in the above steps exceeds K then break the loop and print the value of count till that index.
Below is the implementation of the above approach:
 
C++14
| // C++ program for the above approach#include <bits/stdc++.h>usingnamespacestd;// Function to select a maximum number of// elements in array whose sum is at most KintmaxSelections(intA[], intn, intk){    // Sort the array    sort(A, A + n);    // Calculate the sum and count while    // iterating the sorted array    intsum = 0;    intcount = 0;    // Iterate for all the    // elements in the array    for(inti = 0; i < n; i++) {        // Add the current element to sum        sum = sum + A[i];        if(sum > k) {            break;        }        // Increment the count        count++;    }    // Return the answer    returncount;}// Driver Codeintmain(){    // Given array    intA[] = { 3, 7, 2, 9, 4 };    // Given sum k    intk = 15;    intn = sizeof(A) / sizeof(A[0]);    // Function Call    cout << maxSelections(A, n, k);    return0;} | 
Java
| // Java program for the above approachimportjava.util.*;classGFG{// Function to select a maximum number of// elements in array whose sum is at most KstaticintmaxSelections(intA[], intn, intk){        // Sort the array    Arrays.sort(A);    // Calculate the sum and count while    // iterating the sorted array    intsum = 0;    intcount = 0;    // Iterate for all the    // elements in the array    for(inti = 0; i < n; i++)    {                // Add the current element to sum        sum = sum + A[i];        if(sum > k)        {            break;        }        // Increment the count        count++;    }        // Return the answer    returncount;}// Driver Codepublicstaticvoidmain(String[] args){        // Given array    intA[] = { 3, 7, 2, 9, 4};    // Given sum k    intk = 15;    intn = A.length;    // Function call    System.out.print(maxSelections(A, n, k));}}// This code is contributed by Rajput-Ji | 
Python3
| # Python3 program for # the above approach# Function to select a maximum # number of elements in array # whose sum is at most KdefmaxSelections(A, n, k):  # Sort the array  A.sort();    # Calculate the sum and   # count while iterating   # the sorted array  sum=0;  count =0;  # Iterate for all the  # elements in the array  fori inrange(n):    # Add the current element to sum    sum=sum+A[i];    if(sum> k):      break;      # Increment the count      count +=1;      # Return the answer      returncount;# Driver Codeif__name__ =='__main__':  # Given array  A =[3, 7, 2, 9, 4];  # Given sum k  k =15;  n =len(A);  # Function call  print(maxSelections(A, n, k));    # This code is contributed by gauravrajput1 | 
C#
| // C# program for the above approachusingSystem;classGFG{// Function to select a maximum number of// elements in array whose sum is at most KstaticintmaxSelections(int[] A, intn, intk){    // Sort the array    Array.Sort(A);    // Calculate the sum and count while    // iterating the sorted array    intsum = 0;    intcount = 0;    // Iterate for all the    // elements in the array    for(inti = 0; i < n; i++)    {                // Add the current element to sum        sum = sum + A[i];        if(sum > k)         {            break;        }        // Increment the count        count++;    }    // Return the answer    returncount;}// Driver CodepublicstaticvoidMain(String[] args){    // Given array    int[] A = { 3, 7, 2, 9, 4 };    // Given sum k    intk = 15;    intn = A.Length;    // Function call    Console.Write(maxSelections(A, n, k));}}// This code is contributed by gauravrajput1 | 
Javascript
| <script>// Javascript program for the above approach// Function to select a maximum number of// elements in array whose sum is at most KfunctionmaxSelections( A, n, k){    // Sort the array    A.sort();    // Calculate the sum and count while    // iterating the sorted array    let sum = 0;    let count = 0;    // Iterate for all the    // elements in the array    for(let i = 0; i < n; i++) {        // Add the current element to sum        sum = sum + A[i];        if(sum > k) {            break;        }        // Increment the count        count++;    }    // Return the answer    returncount;}// Driver Code// Given arraylet A = [ 3, 7, 2, 9, 4 ];// Given sum klet k = 15;let n = A.length;// Function Calldocument.write(maxSelections(A, n, k));</script> | 
3
Time Complexity: O(N*log N) 
Auxiliary Space: O(1)  
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

 
                                    







