Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximize median after doing K addition operation on the Array

Maximize median after doing K addition operation on the Array

Given an array arr[] of N elements and an integer K, the task is to perform at most K operation on the array. In the one operation increment any element by one of the array. Find maximize median after doing K such operation. 

Example:

Input: arr[] = {1, 3, 4, 5}, K = 3
Output: 5
Explanation: Here we add two in the second element and one in the third element then we will get a maximum median. After k operation the array can become {1, 5, 5, 5}. So the maximum median we can make is ( 5 + 5 ) / 2 = 5, because here N is even.

Input: arr[] = {1, 3, 6, 4, 2}, K = 10
Output: 7

Approach: 

  1. Sort the array in increasing order.
  2. Since the median is the middle element of the array doing the operation in the left half then it will be worthless because it will not increase the median.
  3. Perform the operation in the second half and start performing the operations from the n/2th element to the end.
  4. If N is even then start doing the operation from the n/2 element to the end.
  5. Using Binary Search we will check for any number is possible as a median or not after doing K operation.
  6. If the median is possible then we will check for the next number which is greater than the current median calculated. Otherwise, the last possible value of the median is the required result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check operation can be
// perform or not
bool possible(int arr[], int N,
              int mid, int K)
{
 
    int add = 0;
 
    for (int i = N / 2 - (N + 1) % 2;
         i < N; ++i) {
 
        if (mid - arr[i] > 0) {
 
            // Number of operation to
            // perform s.t. mid is median
            add += (mid - arr[i]);
 
            if (add > K)
                return false;
        }
    }
 
    // If mid is median of the array
    if (add <= K)
        return true;
    else
        return false;
}
 
// Function to find max median
// of the array
int findMaxMedian(int arr[], int N,
                  int K)
{
 
    // Lowest possible median
    int low = 1;
    int mx = 0;
 
    for (int i = 0; i < N; ++i) {
        mx = max(mx, arr[i]);
    }
 
    // Highest possible median
    long long int high = K + mx;
 
    while (low <= high) {
 
        int mid = (high + low) / 2;
 
        // Checking for mid is possible
        // for the median of array after
        // doing at most k operation
        if (possible(arr, N, mid, K)) {
            low = mid + 1;
        }
 
        else {
            high = mid - 1;
        }
    }
 
    if (N % 2 == 0) {
 
        if (low - 1 < arr[N / 2]) {
            return (arr[N / 2] + low - 1) / 2;
        }
    }
 
    // Return the max possible ans
    return low - 1;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 1, 3, 6 };
 
    // Given number of operation
    int K = 10;
 
    // Size of array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Sort the array
    sort(arr, arr + N);
 
    // Function call
    cout << findMaxMedian(arr, N, K);
 
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check operation can be
// perform or not
static boolean possible(int arr[], int N,
                        int mid, int K)
{
    int add = 0;
 
    for(int i = N / 2 - (N + 1) % 2;
            i < N; ++i)
    {
        if (mid - arr[i] > 0)
        {
 
            // Number of operation to
            // perform s.t. mid is median
            add += (mid - arr[i]);
 
            if (add > K)
                return false;
        }
    }
 
    // If mid is median of the array
    if (add <= K)
        return true;
    else
        return false;
}
 
// Function to find max median
// of the array
static int findMaxMedian(int arr[], int N,
                                    int K)
{
 
    // Lowest possible median
    int low = 1;
    int mx = 0;
 
    for(int i = 0; i < N; ++i)
    {
        mx = Math.max(mx, arr[i]);
    }
 
    // Highest possible median
    int high = K + mx;
 
    while (low <= high)
    {
        int mid = (high + low) / 2;
 
        // Checking for mid is possible
        // for the median of array after
        // doing at most k operation
        if (possible(arr, N, mid, K))
        {
            low = mid + 1;
        }
 
        else
        {
            high = mid - 1;
        }
    }
     
    if (N % 2 == 0)
    {
        if (low - 1 < arr[N / 2])
        {
            return (arr[N / 2] + low - 1) / 2;
        }
    }
     
    // Return the max possible ans
    return low - 1;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given array
    int arr[] = { 1, 3, 6 };
     
    // Given number of operation
    int K = 10;
     
    // Size of array
    int N = arr.length;
     
    // Sort the array
    Arrays.sort(arr);
     
    // Function call
    System.out.println(findMaxMedian(arr, N, K));
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for the above approach
 
# Function to check operation can be
# perform or not
def possible(arr, N, mid, K):
 
    add = 0
 
    for i in range(N // 2 - (N + 1) % 2, N):
 
        if (mid - arr[i] > 0):
 
            # Number of operation to
            # perform s.t. mid is median
            add += (mid - arr[i])
 
            if (add > K):
                return False
 
    # If mid is median of the array
    if (add <= K):
        return True
    else:
        return False
 
# Function to find max median
# of the array
def findMaxMedian(arr, N,K):
 
    # Lowest possible median
    low = 1
    mx = 0
 
    for i in range(N):
        mx = max(mx, arr[i])
 
    # Highest possible median
    high = K + mx
 
    while (low <= high):
 
        mid = (high + low) // 2
 
        # Checking for mid is possible
        # for the median of array after
        # doing at most k operation
        if (possible(arr, N, mid, K)):
            low = mid + 1
        else :
            high = mid - 1
 
    if (N % 2 == 0):
 
        if (low - 1 < arr[N // 2]):
            return (arr[N // 2] + low - 1) // 2
 
    # Return the max possible ans
    return low - 1
 
# Driver Code
if __name__ == '__main__':
     
    # Given array
    arr = [1, 3, 6]
 
    # Given number of operation
    K = 10
 
    # Size of array
    N = len(arr)
 
    # Sort the array
    arr = sorted(arr)
 
    # Function call
    print(findMaxMedian(arr, N, K))
 
# This code is contributed by Mohit Kumar


C#




// C# program for the above approach
using System;
class GFG{
  
// Function to check operation can be
// perform or not
static bool possible(int []arr, int N,
                       int mid, int K)
{
    int add = 0;
  
    for(int i = N / 2 - (N + 1) % 2;
            i < N; ++i)
    {
        if (mid - arr[i] > 0)
        {
  
            // Number of operation to
            // perform s.t. mid is median
            add += (mid - arr[i]);
  
            if (add > K)
                return false;
        }
    }
  
    // If mid is median of the array
    if (add <= K)
        return true;
    else
        return false;
}
  
// Function to find max median
// of the array
static int findMaxMedian(int []arr, int N,
                                    int K)
{
  
    // Lowest possible median
    int low = 1;
    int mx = 0;
  
    for(int i = 0; i < N; ++i)
    {
        mx = Math.Max(mx, arr[i]);
    }
  
    // Highest possible median
    int high = K + mx;
  
    while (low <= high)
    {
        int mid = (high + low) / 2;
  
        // Checking for mid is possible
        // for the median of array after
        // doing at most k operation
        if (possible(arr, N, mid, K))
        {
            low = mid + 1;
        }
  
        else
        {
            high = mid - 1;
        }
    }
      
    if (N % 2 == 0)
    {
        if (low - 1 < arr[N / 2])
        {
            return (arr[N / 2] + low - 1) / 2;
        }
    }
      
    // Return the max possible ans
    return low - 1;
}
  
// Driver code
public static void Main(string[] args)
{
      
    // Given array
    int []arr = { 1, 3, 6 };
      
    // Given number of operation
    int K = 10;
      
    // Size of array
    int N = arr.Length;
      
    // Sort the array
    Array.Sort(arr);
      
    // Function call
    Console.Write(findMaxMedian(arr, N, K));
}
}
  
// This code is contributed by rock_cool


Javascript




<script>
 
    // Javascript program for the above approach
     
    // Function to check operation can be
    // perform or not
    function possible(arr, N, mid, K)
    {
 
        let add = 0;
 
        for (let i = parseInt(N / 2, 10) - (N + 1) % 2; i < N; ++i) {
 
            if (mid - arr[i] > 0) {
 
                // Number of operation to
                // perform s.t. mid is median
                add += (mid - arr[i]);
 
                if (add > K)
                    return false;
            }
        }
 
        // If mid is median of the array
        if (add <= K)
            return true;
        else
            return false;
    }
 
    // Function to find max median
    // of the array
    function findMaxMedian(arr, N, K)
    {
 
        // Lowest possible median
        let low = 1;
        let mx = 0;
 
        for (let i = 0; i < N; ++i) {
            mx = Math.max(mx, arr[i]);
        }
 
        // Highest possible median
        let high = K + mx;
 
        while (low <= high) {
 
            let mid = parseInt((high + low) / 2, 10);
 
            // Checking for mid is possible
            // for the median of array after
            // doing at most k operation
            if (possible(arr, N, mid, K)) {
                low = mid + 1;
            }
 
            else {
                high = mid - 1;
            }
        }
 
        if (N % 2 == 0) {
 
            if (low - 1 < arr[parseInt(N / 2)]) {
                return parseInt((arr[parseInt(N / 2)] + low - 1) / 2, 10);
            }
        }
 
        // Return the max possible ans
        return low - 1;
    }
 
    // Given array
    let arr = [ 1, 3, 6 ];
  
    // Given number of operation
    let K = 10;
  
    // Size of array
    let N = arr.length;
  
    // Sort the array
    arr.sort();
  
    // Function call
    document.write(findMaxMedian(arr, N, K));
     
</script>


Output: 

9

 

Time Complexity: O(N*log(K + M)), where M is the maximum element of the given array.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments