Sunday, September 7, 2025
HomeData Modelling & AIMaximize matrix as per given condition

Maximize matrix as per given condition

you are given an N*N matrix, where each element of the matrix lies in the range 0 to M. You can apply the below operation on the matrix any number of times: 

  • Choose any two consecutive elements
  • Increment one of them by 1 and decrease the other by 1

Note: The elements should remain within the range of 0 to M after applying the above operations. 

The task is to find the maximum value of the expression shown below that can be obtained after performing the above operation on the matrix if required: 

res += (i+j)*A[i][j]

for 0 <= i, j <= N

Examples: 

Input : A[][] = {1, 2,
                 5, 1}
        M = 5
Output : RESULT = 27
Matrix : 0 0
         4 5

Input : A[][] = {3, 4,
                 5, 4}
        M = 6
Output : RESULT = 43
Matrix : 0 4
         6 6

Algorithm : 

Below is the step-by-step algorithm to do this: 

  1. First of all, calculate the sum of all elements of the given matrix as SUM.
  2. Start from last element that i.e. A(n, n) and move backward towards A(0,0) anti-diagonally as A(n, n), A(n, n-1), A(n-1, n), A(n, n-2), A(n-1, n-1), A(n-2, n)…..
  3. Fill up each cell of a matrix with M and update SUM = SUM- M for each element till SUM < M. Now, Fill the SUM value at the next place in order if it is greater than zero and all other remaining places as zero.
  4. Finally, you can calculate RESULT as per the above-mentioned formula.

Example : 

Input Matrix: 
 

Matrix 1

Solution Matrix after applying the above algorithm : 
 

matrix 2

Below is the implementation of the above idea : 

C++




// CPP to maximize matrix result
#include<bits/stdc++.h>
using namespace std;
#define n 4
  
// utility function for maximize matrix result
int maxMatrix(int A[][n], int M)
{
    int sum = 0, res = 0;
    for ( int i=0; i<n ; i++)
        for ( int j=0; j<n; j++)
            sum += A[i][j];
  
    // diagonals below longest diagonal
    // starting from last element of matrix
    for (int j=n-1; j>0; j--)
    {
        for (int i=0; i<n-j; i++)
        {
            if (sum > M)
            {
                A[n-1-i][j+i] = M;
                sum -= M;
            }
            else
            {
                A[n-1-i][j+i] = sum;
                sum -= sum;
            }
        }
    }  
  
    // diagonals above longest diagonal
    for (int i=n-1; i>=0; i--)
    {
        for (int j=0; j<=i; j++)
         {
            if (sum > M)
            {
                A[i-j][j] = M;
                sum -= M;
            }
            else
            {
                A[i-j][j] = sum;
                sum -= sum;
            }
        }
    }
  
    // calculating result
    for (int i=0; i<n; i++)
    {
         for (int j=0; j<n;j++)
             res += (i+j+2) * A[i][j];
    }
    return res;
}
  
// driver program  
int main()
{
    int A[n][n] = { 1, 2, 3, 4,
                    5, 6, 7, 8,
                    9, 1, 1, 2,
                    3, 4, 5, 6};
    int m = 9;
    cout << maxMatrix(A, m);
    return 0;


Java




// Java to maximize matrix result 
  
class GFG {
  
    static final int n = 4;
  
// utility function for maximize matrix result 
    static int maxMatrix(int A[][], int M) {
        int sum = 0, res = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                sum += A[i][j];
            }
        }
  
        // diagonals below longest diagonal 
        // starting from last element of matrix 
        for (int j = n - 1; j > 0; j--) {
            for (int i = 0; i < n - j; i++) {
                if (sum > M) {
                    A[n - 1 - i][j + i] = M;
                    sum -= M;
                } else {
                    A[n - 1 - i][j + i] = sum;
                    sum -= sum;
                }
            }
        }
  
        // diagonals above longest diagonal 
        for (int i = n - 1; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                if (sum > M) {
                    A[i - j][j] = M;
                    sum -= M;
                } else {
                    A[i - j][j] = sum;
                    sum -= sum;
                }
            }
        }
  
        // calculating result 
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                res += (i + j + 2) * A[i][j];
            }
        }
        return res;
    }
  
// driver program 
    static public void main(String[] args) {
        int A[][] = {{1, 2, 3, 4},
        {5, 6, 7, 8},
        {9, 1, 1, 2},
        {3, 4, 5, 6}};
        int m = 9;
        System.out.println(maxMatrix(A, m));
    }
}
  
// This code is contributed by Rajput-Ji


Python3




# Python to maximize matrix result
n = 4
  
# utility function for maximize
# matrix result
def maxMatrix(A, M):
    sum, res = 0, 0
    for i in range(n):
        for j in range(n):
            sum += A[i][j]
  
    # diagonals below longest diagonal
    # starting from last element of matrix
    for j in range(n - 1, 0, -1):
        for i in range(n - j):
            if (sum > M):
                A[n - 1 - i][j + i] = M
                sum -= M
            else:
                A[n - 1 - i][j + i] = sum
                sum -= sum
                  
    # diagonals above longest diagonal
    for i in range(n - 1, -1, -1):
        for j in range(i + 1):
            if (sum > M):
                A[i - j][j] = M
                sum -= M
            else:
                A[i - j][j] = sum
                sum -= sum
                  
    # calculating result
    for i in range(n):
        for j in range(n):
            res += (i + j + 2) * A[i][j]
    return res
  
# Driver Code
if __name__ == '__main__':
    A = [[1, 2, 3, 4],
         [5, 6, 7, 8],
         [9, 1, 1, 2],
         [3, 4, 5, 6]]
    m = 9
    print(maxMatrix(A, m))
  
# This code is contributed by 29AjayKumar


C#




      
// C# to maximize matrix result 
using System;
public class GFG {
   
    static readonly int n = 4;
   
// utility function for maximize matrix result 
    static int maxMatrix(int [,]A, int M) {
        int sum = 0, res = 0;
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                sum += A[i,j];
            }
        }
   
        // diagonals below longest diagonal 
        // starting from last element of matrix 
        for (int j = n - 1; j > 0; j--) {
            for (int i = 0; i < n - j; i++) {
                if (sum > M) {
                    A[n - 1 - i,j + i] = M;
                    sum -= M;
                } else {
                    A[n - 1 - i,j + i] = sum;
                    sum -= sum;
                }
            }
        }
   
        // diagonals above longest diagonal 
        for (int i = n - 1; i >= 0; i--) {
            for (int j = 0; j <= i; j++) {
                if (sum > M) {
                    A[i - j,j] = M;
                    sum -= M;
                } else {
                    A[i - j,j] = sum;
                    sum -= sum;
                }
            }
        }
   
        // calculating result 
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                res += (i + j + 2) * A[i,j];
            }
        }
        return res;
    }
   
// driver program 
    static public void Main() {
        int [,]A= {{1, 2, 3, 4},
        {5, 6, 7, 8},
        {9, 1, 1, 2},
        {3, 4, 5, 6}};
        int m = 9;
        Console.Write(maxMatrix(A, m));
    }
}
   
// This code is contributed by Rajput-Ji


PHP




<?php
// PHP to maximize matrix result
  
$n = 4;
  
// function for maximize
// matrix result
function maxMatrix($A, $M)
{
    global $n;
    $sum = 0; $res = 0;
    for ($i = 0; $i < $n ; $i++)
        for ($j = 0; $j < $n; $j++)
            $sum += $A[$i][$j];
  
    // diagonals below longest diagonal
    // starting from last element of matrix
    for ($j = $n - 1; $j > 0; $j--)
    {
        for ($i = 0; $i < $n - $j; $i++)
        {
            if ($sum > $M)
            {
                $A[$n - 1 - $i][$j + $i] = $M;
                $sum -= $M;
            }
            else
            {
                $A[$n - 1 - $i][$j + i] = $sum;
                $sum -= $sum;
            }
        }
    
  
    // diagonals above longest diagonal
    for ($i = $n - 1; $i >= 0; $i--)
    {
        for ($j = 0; $j <= $i; $j++)
        {
            if ($sum > $M)
            {
                $A[$i - $j][$j] = $M;
                $sum -= $M;
            }
            else
            {
                $A[$i - $j][$j] = $sum;
                $sum -= $sum;
            }
        }
    }
  
    // calculating result
    for ($i = 0; $i < $n; $i++)
    {
        for ($j = 0; $j < $n; $j++)
            $res += ($i + $j + 2) * 
                     $A[$i][$j];
    }
    return $res;
}
  
    // Driver Code 
    $A = array(array(1, 2, 3, 4),
               array(5, 6, 7, 8),
               array(9, 1, 1, 2),
               array(3, 4, 5, 6));
    $m = 9;
    echo maxMatrix($A, $m);
      
// This code is contributed by anuj_67.
?>


Javascript




<script>
    // Javascript to maximize matrix result 
      
    let n = 4;
    
    // utility function for maximize matrix result 
    function maxMatrix(A, M) {
        let sum = 0, res = 0;
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < n; j++) {
                sum += A[i][j];
            }
        }
    
        // diagonals below longest diagonal 
        // starting from last element of matrix 
        for (let j = n - 1; j > 0; j--) {
            for (let i = 0; i < n - j; i++) {
                if (sum > M) {
                    A[n - 1 - i][j + i] = M;
                    sum -= M;
                } else {
                    A[n - 1 - i][j + i] = sum;
                    sum -= sum;
                }
            }
        }
    
        // diagonals above longest diagonal 
        for (let i = n - 1; i >= 0; i--) {
            for (let j = 0; j <= i; j++) {
                if (sum > M) {
                    A[i - j][j] = M;
                    sum -= M;
                } else {
                    A[i - j][j] = sum;
                    sum -= sum;
                }
            }
        }
    
        // calculating result 
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < n; j++) {
                res += (i + j + 2) * A[i][j];
            }
        }
        return res;
    }
      
    let A = [[1, 2, 3, 4],
             [5, 6, 7, 8],
             [9, 1, 1, 2],
             [3, 4, 5, 6]];
    let m = 9;
    document.write(maxMatrix(A, m));
  
// This code is contributed by divyesh072019.
</script>


Output

425

Time Complexity: O(n2)
Auxiliary Space: O(1)

If you like neveropen and would like to contribute, you can also write an article using write.neveropen.co.uk or mail your article to review-team@neveropen.co.uk. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Dominic
32271 POSTS0 COMMENTS
Milvus
82 POSTS0 COMMENTS
Nango Kala
6644 POSTS0 COMMENTS
Nicole Veronica
11808 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11871 POSTS0 COMMENTS
Shaida Kate Naidoo
6755 POSTS0 COMMENTS
Ted Musemwa
7030 POSTS0 COMMENTS
Thapelo Manthata
6705 POSTS0 COMMENTS
Umr Jansen
6721 POSTS0 COMMENTS