Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMaximize K to make given array Palindrome when each element is replaced...

Maximize K to make given array Palindrome when each element is replaced by its remainder with K

Given an array A[] containing N positive integers, the task is to find the largest possible number K, such that after replacing all elements by the elements modulo K(A[i]=A[i]%K, for all 0<=i<N), the array becomes a palindrome. If K is infinitely large, print -1.

Examples:

Input: A={1, 2, 3, 4}, N=4
Output:
1
Explanation:
For K=1, A becomes {1%1, 2%1, 3%1, 4%1}={0, 0, 0, 0} which is a palindromic array. 

Input: A={1, 2, 3, 2, 1}, N=5
Output:
-1

 

Observation: The following observations help in solving the problem:

  1. If the array is already a palindrome, K can be infinitely large.
  2. Two numbers, say A and B can be made equal by taking their modulus with their difference(|A-B|) as well as the factors of their difference.

Approach: The problem can be solved by making K equal to the GCD of the absolute differences of A[i] and A[N-i-1]. Follow the steps below to solve the problem:

  1. Check whether A is already a palindrome. If it is, return -1.
  2. Store the absolute difference of the first and last elements of the array in a variable, say K, which will store the largest number required to change A into a palindrome.
  3. Traverse from 1 to N/2-1, and for each current index i, do the following:
    1. Update K with the GCD of K and the absolute difference of A[i] and A[N-i-1].
  4. Return K.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// utility function to calculate the GCD of two numbers
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
// Function to calculate the largest K, replacing all
// elements of an array A by their modulus with K, makes A a
// palindromic array
int largestK(int A[], int N)
{
    // check if A is palindrome
    int l = 0, r = N - 1, flag = 0;
    while (l < r) {
        // A is not palindromic
        if (A[l] != A[r]) {
            flag = 1;
            break;
        }
        l++;
        r--;
    }
    // K can be infitely large in this case
    if (flag == 0)
        return -1;
 
    // variable to store the largest K that makes A
    // palindromic
    int K = abs(A[0] - A[N - 1]);
    for (int i = 1; i < N / 2; i++)
        K = gcd(K, abs(A[i] - A[N - i - 1]));
    // return the required answer
    return K;
}
// Driver code
int main()
{
    // Input
    int A[] = { 1, 2, 3, 2, 1 };
    int N = sizeof(A) / sizeof(A[0]);
 
    // Function call
    cout << largestK(A, N) << endl;
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Utility function to calculate the GCD
// of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Function to calculate the largest K,
// replacing all elements of an array A
// by their modulus with K, makes A a
// palindromic array
static int largestK(int A[], int N)
{
     
    // Check if A is palindrome
    int l = 0, r = N - 1, flag = 0;
    while (l < r)
    {
         
        // A is not palindromic
        if (A[l] != A[r])
        {
            flag = 1;
            break;
        }
        l++;
        r--;
    }
     
    // K can be infitely large in this case
    if (flag == 0)
        return -1;
 
    // Variable to store the largest K
    // that makes A palindromic
    int K = Math.abs(A[0] - A[N - 1]);
    for(int i = 1; i < N / 2; i++)
        K = gcd(K, Math.abs(A[i] - A[N - i - 1]));
         
    // Return the required answer
    return K;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Input
    int A[] = { 1, 2, 3, 2, 1 };
    int N = A.length;
     
    // Function call
    System.out.println(largestK(A, N));
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# utility function to calculate the GCD of two numbers
def gcd(a, b):
    if (b == 0):
        return a
    else:
        return gcd(b, a % b)
       
# Function to calculate the largest K, replacing all
# elements of an array A by their modulus with K, makes A a
# palindromic array
def largestK(A, N):
   
    # check if A is palindrome
    l,r,flag = 0, N - 1, 0
    while (l < r):
        # A is not palindromic
        if (A[l] != A[r]):
            flag = 1
            break
        l += 1
        r -= 1
    # K can be infitely large in this case
    if (flag == 0):
        return -1
 
    # variable to store the largest K that makes A
    # palindromic
    K = abs(A[0] - A[N - 1])
    for i in range(1,N//2):
        K = gcd(K, abs(A[i] - A[N - i - 1]))
     
    # return the required answer
    return K
   
# Driver code
if __name__ == '__main__':
    # Input
    A= [1, 2, 3, 2, 1 ]
    N = len(A)
 
    # Function call
    print (largestK(A, N))
 
# This code is contributed by mohit kumar 29.


C#




// c# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// utility function to calculate the GCD of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
   
// Function to calculate the largest K, replacing all
// elements of an array A by their modulus with K, makes A a
// palindromic array
static int largestK(int []A, int N)
{
   
    // check if A is palindrome
    int l = 0, r = N - 1, flag = 0;
    while (l < r) {
        // A is not palindromic
        if (A[l] != A[r]) {
            flag = 1;
            break;
        }
        l++;
        r--;
    }
   
    // K can be infitely large in this case
    if (flag == 0)
        return -1;
 
    // variable to store the largest K that makes A
    // palindromic
    int K = Math.Abs(A[0] - A[N - 1]);
    for (int i = 1; i < N / 2; i++)
        K = gcd(K, Math.Abs(A[i] - A[N - i - 1]));
   
    // return the required answer
    return K;
}
 
// Driver code
public static void Main()
{
   
    // Input
    int []A = { 1, 2, 3, 2, 1 };
    int N = A.Length;
 
    // Function call
    Console.Write(largestK(A, N));
}
}
 
// This code is contributed by ipg2016107.


Javascript




<script>
 
// Javascript program for the above approach
 
// utility function to calculate the
// GCD of two numbers
function gcd(a, b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
 
// Function to calculate the largest
// K, replacing all elements of an
// array A by their modulus with K,
// makes A a palindromic array
function largestK(A, N)
{
     
    // Check if A is palindrome
    let l = 0, r = N - 1, flag = 0;
     
    while (l < r)
    {
         
        // A is not palindromic
        if (A[l] != A[r])
        {
            flag = 1;
            break;
        }
        l++;
        r--;
    }
     
    // K can be infitely large in this case
    if (flag == 0)
        return -1;
 
    // Variable to store the largest K
    // that makes A palindromic
    let K = Math.abs(A[0] - A[N - 1]);
    for(let i = 1; i < N / 2; i++)
        K = gcd(K, Math.abs(A[i] - A[N - i - 1]));
         
    // Return the required answer
    return K;
}
 
// Driver code
 
// Input
let A = [ 1, 2, 3, 2, 1 ];
let N = A.length;
 
// Function call
document.write(largestK(A, N) + "<br>");
 
// This code is contributed by gfgking
 
</script>


Output

-1

Time Complexity: O(NLogM), where M is the largest element in the array
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments