Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximize distance between any two consecutive 1’s after flipping M 0’s

Maximize distance between any two consecutive 1’s after flipping M 0’s

Given the size of a binary array consisting of 0’s only as n and an integer m which is the number of flips allowed from 0’s o 1’s; the task is to maximize the distance between any two consecutive 1’s after flipping m 0’s to 1’s.

Examples:  

Input: n = 5, m = 3 
Output: 2
Explanation: 
The initial array is arr = {0, 0, 0, 0, 0}, 
The final array is arr = {1, 0, 1, 0, 1}, 
So distance between two consecutive 1’s is 2.

Input: n = 9, m = 3 
Output:
Explanation: 
The initial array is arr = {0, 0, 0, 0, 0, 0, 0, 0, 0}, 
The final array is arr = {1, 0, 0, 0, 1, 0, 0, 0, 1}, 
so distance between two consecutive 1’s 4.  

Approach:  

  • We can simply binary search on the distance between any two consecutive ones and check whether we can flip m numbers of zero’s to one’s. 
  • First, we set low = 1, and high = n – 1,
  • Then check whether mid = (low+high)/2 will be a suitable distance or not.
  • If it is then the updated answer is mid, else decrease high = mid – 1.

Below is the implementation of the above approach:  

CPP




// C++ program to Maximize distance between
// any two consecutive 1's after flipping M 0's
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count
bool check(int arr[], int n, int m, int d)
{
    // Flipping zeros at distance "d"
    int i = 0;
    while (i < n && m > 0) {
        m--;
        i += d;
    }
 
    return m == 0 ? true : false;
}
 
// Function to implement
// binary search
int maximumDistance(int arr[], int n, int m)
{
 
    int low = 1, high = n - 1;
    int ans = 0;
 
    while (low <= high) {
 
        int mid = (low + high) / 2;
 
        // Check for valid distance i.e mid
        bool flag = check(arr, n, m, mid);
 
        if (flag) {
            ans = mid;
            low = mid + 1;
        }
        else {
            high = mid - 1;
        }
    }
 
    return ans;
}
 
// Driver code
int main()
{
 
    int n = 5, m = 3;
    int arr[n] = { 0 };
 
    cout << maximumDistance(arr, n, m);
 
    return 0;
}


Java




// Java program to Maximize distance between
// any two consecutive 1's after flipping M 0's
 
class GFG
{
 
    // Function to return the count
    static boolean check(int arr[], int n, int m, int d)
    {
         
        // Flipping zeros at distance "d"
        int i = 0;
        while (i < n && m > 0)
        {
            m--;
            i += d;
        }
 
        return m == 0 ? true : false;
    }
 
    // Function to implement
    // binary search
    static int maximumDistance(int arr[], int n, int m)
    {
 
        int low = 1, high = n - 1;
        int ans = 0;
 
        while (low <= high)
        {
 
            int mid = (low + high) / 2;
 
            // Check for valid distance i.e mid
            boolean flag = check(arr, n, m, mid);
 
            if (flag)
            {
                ans = mid;
                low = mid + 1;
            }
            else
            {
                high = mid - 1;
            }
        }
 
        return ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        int n = 5, m = 3;
        int arr[] = new int[n];
 
        System.out.print(maximumDistance(arr, n, m));
 
    }
}
 
// This code is contributed by 29AjayKumar


Python




# Python3 program to Maximize distance between
# any two consecutive 1's after flipping M 0's
 
# Function to return the count
def check(arr, n, m, d):
     
    # Flipping zeros at distance "d"
    i = 0
    while (i < n and m > 0):
        m -= 1
        i += d
    if m == 0:
        return True
 
    return False
 
# Function to implement
# binary search
def maximumDistance(arr, n, m):
 
    low = 1
    high = n - 1
    ans = 0
 
    while (low <= high):
 
        mid = (low + high) // 2
 
        # Check for valid distance i.e mid
        flag = check(arr, n, m, mid)
 
        if (flag) :
            ans = mid
            low = mid + 1
        else :
            high = mid - 1
 
 
    return ans
 
# Driver code
 
n = 5
m = 3
arr = [0] * n
 
print(maximumDistance(arr, n, m))
 
# This code is contributed by mohit kumar 29


C#




// C# program to Maximize distance between
// any two consecutive 1's after flipping M 0's
using System;
 
class GFG
{
 
    // Function to return the count
    static bool check(int []arr, int n, int m, int d)
    {
         
        // Flipping zeros at distance "d"
        int i = 0;
        while (i < n && m > 0)
        {
            m--;
            i += d;
        }
 
        return m == 0 ? true : false;
    }
 
    // Function to implement
    // binary search
    static int maximumDistance(int []arr, int n, int m)
    {
 
        int low = 1, high = n - 1;
        int ans = 0;
 
        while (low <= high)
        {
 
            int mid = (low + high) / 2;
 
            // Check for valid distance i.e mid
            bool flag = check(arr, n, m, mid);
 
            if (flag)
            {
                ans = mid;
                low = mid + 1;
            }
            else
            {
                high = mid - 1;
            }
        }
 
        return ans;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
 
        int n = 5, m = 3;
        int []arr = new int[n];
 
        Console.Write(maximumDistance(arr, n, m));
 
    }
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
//Javascript program to Maximize distance between
// any two consecutive 1's after flipping M 0's
 
// Function to return the count
function check(arr, n, m, d)
{
    // Flipping zeros at distance "d"
    var i = 0;
    while (i < n && m > 0) {
        m--;
        i += d;
    }
 
    return m == 0 ? true : false;
}
 
// Function to implement
// binary search
function maximumDistance(arr, n, m)
{
 
    var low = 1, high = n - 1;
    var ans = 0;
 
    while (low <= high) {
 
        var mid = parseInt( (low + high) / 2);
 
        // Check for valid distance i.e mid
        var flag = check(arr, n, m, mid);
 
        if (flag) {
            ans = mid;
            low = mid + 1;
        }
        else {
            high = mid - 1;
        }
    }
 
    return ans;
}
 
 
var  n = 5, m = 3;
var arr = new Array(n);
arr.fill(0);
document.write(  maximumDistance(arr, n, m));
 
 
 
//This code is contributed by SoumikMondal
</script>


Output: 

2

 

Time Complexity: O(n*log(n)), The main part of the algorithm is binary search that takes O(log n) time. The check function has a loop that runs until the end of the array, and in the worst case, it can run n/d times, where d is the current distance being checked. Therefore, the time complexity of the check function is O(n/d). Since binary search is executed log n times, the overall time complexity of the algorithm is O(n*log n).
Auxiliary Space: O(1), The space complexity of the algorithm is O(1) since the memory usage is constant, and it does not depend on the input size. The input array is not modified, and the function uses only a few variables to store intermediate results. Therefore, the space complexity of the algorithm is constant.

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments