Tuesday, January 7, 2025
Google search engine
HomeData Modelling & AIMaximize difference between odd and even-indexed array elements by rotating their binary...

Maximize difference between odd and even-indexed array elements by rotating their binary representations

Given an array arr[] consisting of N positive integers, the task is to find the maximum absolute difference between the sum of the array elements placed at even indices and those at odd indices of the array by rotating their binary representations any number of times. Consider only 8-bit representation.

Examples:

Input: arr[] = {123, 86, 234, 189}
Output: 326
Explanation:
Following are the rotation of elements:

  1. For arr[0] (= 123): arr[0] = (123)10 = (1111011)2. Rotate the bits to the right twice to make arr[0] = (1111100)2 = (246)10.
  2. For arr[1] (= 86): arr[1] = (86)10 = (1010110)2. Rotate the bits to the right once to make arr[1] = (0101011)2 = (43)10.
  3. For element arr[3](=189): arr[3] = (189)10 = (10111101)2. Rotate the bits once to the left to make arr[3] = (011111011)2 = (111)10.

Therefore, the array arr[] modifies to {246, 43, 234, 111}. The maximum absolute difference = (246 + 234) – (43 + 111) = 326.

Input: arr[] = {211, 122, 212, 222}, N = 4
Output: 376

Approach: The given problem can be solved by minimizing elements either at even or odd indices and maximizing elements other indices by rotating the binary representation of each array elements and find the maximum difference. Follow the steps below to solve the problem:

  • Define a function say Rotate(X, f) to find the maximum and minimum value of a number possible after rotating the bits in the binary representation of any number.
    • Initialize two variables, say maxi = X and mini = X to store the maximum and minimum value of the number X possible.
    • Iterate over the bits of the number X and then rotate the bits of X by performing the following:
      • If X is odd, then update the value of X as X >> 1 and X = X | (1<<7).
      • Otherwise, update the value of X as X >> 1.
    • Update the value of maxi as the maximum of maxi and X.
    • Update the value of mini as the minimum of mini and X.
    • If the value of f is 1, return maxi. Otherwise, return mini.
  • Now, find the difference obtained by maximizing the element placed at even indices and minimizing the elements placed at odd indices and store that difference in a variable, say caseOne.
  • Now, find the difference obtained by minimizing the element placed at even indices and maximizing the elements placed at odd indices and store that difference in a variable, say caseTwo.
  • After completing the above steps, print the maximum of caseOne and caseTwo as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find maximum and
// minimum value of a number that
// can be obtained by rotating bits
int Rotate(int n, int f)
{
 
    // Stores the value of N
    int temp = n;
 
    // Stores the maximum value
    int maxi = n;
 
    // Stores the minimum value
    int mini = n;
 
    for (int idx = 0; idx < 7; idx++) {
 
        // If temp is odd
        if (temp & 1) {
            temp >>= 1;
            temp += pow(2, 7);
        }
 
        else
            temp >>= 1;
 
        // Update the maximum
        // and the minimum value
        mini = min(mini, temp);
        maxi = max(maxi, temp);
    }
 
    // If flag is 1, then
    // return the maximum value
    if (f)
        return (maxi);
 
    // Otherwise, return
    // the maximum value
    else
        return (mini);
}
 
// Function to find the maximum difference
// between the sum of odd and even-indexed
// array elements possible by rotating bits
int calcMinDiff(int arr[], int n)
{
 
    // Stores the maximum difference
    int caseOne = 0;
 
    // Stores the sum of elements
    // present at odd indices
    int sumOfodd = 0;
 
    // Stores the sum of elements
    // present at even indices
    int sumOfeven = 0;
 
    // Traverse the given array
    for (int i = 0; i < n; i++) {
 
        // If the index is even
        if (i % 2)
            sumOfodd += Rotate(arr[i], 0);
        else
            sumOfeven += Rotate(arr[i], 1);
    }
 
    // Update the caseOne
    caseOne = abs(sumOfodd - sumOfeven);
 
    // Stores the maximum difference
    int caseTwo = 0;
 
    // Stores the sum of elements
    // placed at odd positions
    sumOfodd = 0;
 
    // Stores the sum of elements
    // placed at even positions
    sumOfeven = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++)
    {
 
        // If the index is even
        if (i % 2)
            sumOfodd += Rotate(arr[i], 1);
        else
            sumOfeven += Rotate(arr[i], 0);
    }
   
    // Update the caseTwo
    caseTwo = abs(sumOfodd - sumOfeven);
 
    // Return the maximum of caseOne
    // and caseTwo
    return max(caseOne, caseTwo);
}
 
// Driver Code
int main()
{
    int arr[] = { 123, 86, 234, 189 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << (calcMinDiff(arr, n));
}
 
// This code is contributed by ukasp.


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to find maximum and
// minimum value of a number that
// can be obtained by rotating bits
static int Rotate(int n, int f)
{
 
    // Stores the value of N
    int temp = n;
 
    // Stores the maximum value
    int maxi = n;
 
    // Stores the minimum value
    int mini = n;
 
    for (int idx = 0; idx < 7; idx++) {
 
        // If temp is odd
        if (temp %2 == 1) {
            temp >>= 1;
            temp += Math.pow(2, 7);
        }
 
        else
            temp >>= 1;
 
        // Update the maximum
        // and the minimum value
        mini = Math.min(mini, temp);
        maxi = Math.max(maxi, temp);
    }
 
    // If flag is 1, then
    // return the maximum value
    if (f==1)
        return (maxi);
 
    // Otherwise, return
    // the maximum value
    else
        return (mini);
}
 
// Function to find the maximum difference
// between the sum of odd and even-indexed
// array elements possible by rotating bits
static int calcMinDiff(int arr[], int n)
{
 
    // Stores the maximum difference
    int caseOne = 0;
 
    // Stores the sum of elements
    // present at odd indices
    int sumOfodd = 0;
 
    // Stores the sum of elements
    // present at even indices
    int sumOfeven = 0;
 
    // Traverse the given array
    for (int i = 0; i < n; i++) {
 
        // If the index is even
        if (i % 2==0)
            sumOfodd += Rotate(arr[i], 0);
        else
            sumOfeven += Rotate(arr[i], 1);
    }
 
    // Update the caseOne
    caseOne = Math.abs(sumOfodd - sumOfeven);
 
    // Stores the maximum difference
    int caseTwo = 0;
 
    // Stores the sum of elements
    // placed at odd positions
    sumOfodd = 0;
 
    // Stores the sum of elements
    // placed at even positions
    sumOfeven = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++)
    {
 
        // If the index is even
        if (i % 2==0)
            sumOfodd += Rotate(arr[i], 1);
        else
            sumOfeven += Rotate(arr[i], 0);
    }
   
    // Update the caseTwo
    caseTwo = Math.abs(sumOfodd - sumOfeven);
 
    // Return the maximum of caseOne
    // and caseTwo
    return Math.max(caseOne, caseTwo);
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 123, 86, 234, 189 };
    int n = arr.length;
    System.out.print((calcMinDiff(arr, n)));
}
}
 
// This code contributed by umadevi9616.


Python3




# Python program for the above approach
 
# Function to find maximum and
# minimum value of a number that
# can be obtained by rotating bits
def Rotate(n, f):
 
    # Stores the value of N
    temp = n
     
    # Stores the maximum value
    maxi = n
     
    # Stores the minimum value
    mini = n
 
    for idx in range(7):
       
        # If temp is odd
        if temp & 1:
            temp >>= 1
            temp += 2**7
             
        else:
            temp >>= 1
             
        # Update the maximum
        # and the minimum value
        mini = min(mini, temp)
        maxi = max(maxi, temp)
         
    # If flag is 1, then
    # return the maximum value
    if(f):
        return (maxi)
     
    # Otherwise, return
    # the maximum value
    else:
        return (mini)
 
# Function to find the maximum difference
# between the sum of odd and even-indexed
# array elements possible by rotating bits
def calcMinDiff(arr):
 
    # Stores the maximum difference
    caseOne = 0
     
    # Stores the sum of elements
    # present at odd indices
    sumOfodd = 0
 
    # Stores the sum of elements
    # present at even indices
    sumOfeven = 0
 
    # Traverse the given array
    for i in range(len(arr)):
       
        # If the index is even
        if i % 2:
            sumOfodd += Rotate(arr[i], 0)
        else:
            sumOfeven += Rotate(arr[i], 1)
             
    # Update the caseOne
    caseOne = abs(sumOfodd - sumOfeven)
 
    # Stores the maximum difference
    caseTwo = 0
     
    # Stores the sum of elements
    # placed at odd positions
    sumOfodd = 0
 
    # Stores the sum of elements
    # placed at even positions
    sumOfeven = 0
 
    # Traverse the array
    for i in range(len(arr)):
       
        # If the index is even
        if i % 2:
            sumOfodd += Rotate(arr[i], 1)
        else:
            sumOfeven += Rotate(arr[i], 0)
             
    # Update the caseTwo
    caseTwo = abs(sumOfodd - sumOfeven)
 
    # Return the maximum of caseOne
    # and caseTwo
    return max(caseOne, caseTwo)
 
 
# Driver Code
 
arr = [123, 86, 234, 189]
print(calcMinDiff(arr))


C#




// C# program for the above approach
 
using System;
 
public class GFG {
 
// Function to find maximum and
// minimum value of a number that
// can be obtained by rotating bits
static int Rotate(int n, int f)
{
 
    // Stores the value of N
    int temp = n;
 
    // Stores the maximum value
    int maxi = n;
 
    // Stores the minimum value
    int mini = n;
 
    for (int idx = 0; idx < 7; idx++) {
 
        // If temp is odd
        if (temp %2 == 1) {
            temp >>= 1;
            temp += (int)Math.Pow(2, 7);
        }
 
        else
            temp >>= 1;
 
        // Update the maximum
        // and the minimum value
        mini = Math.Min(mini, temp);
        maxi = Math.Max(maxi, temp);
    }
 
    // If flag is 1, then
    // return the maximum value
    if (f==1)
        return (maxi);
 
    // Otherwise, return
    // the maximum value
    else
        return (mini);
}
 
// Function to find the maximum difference
// between the sum of odd and even-indexed
// array elements possible by rotating bits
static int calcMinDiff(int[] arr, int n)
{
 
    // Stores the maximum difference
    int caseOne = 0;
 
    // Stores the sum of elements
    // present at odd indices
    int sumOfodd = 0;
 
    // Stores the sum of elements
    // present at even indices
    int sumOfeven = 0;
 
    // Traverse the given array
    for (int i = 0; i < n; i++) {
 
        // If the index is even
        if (i % 2==0)
            sumOfodd += Rotate(arr[i], 0);
        else
            sumOfeven += Rotate(arr[i], 1);
    }
 
    // Update the caseOne
    caseOne = Math.Abs(sumOfodd - sumOfeven);
 
    // Stores the maximum difference
    int caseTwo = 0;
 
    // Stores the sum of elements
    // placed at odd positions
    sumOfodd = 0;
 
    // Stores the sum of elements
    // placed at even positions
    sumOfeven = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++)
    {
 
        // If the index is even
        if (i % 2==0)
            sumOfodd += Rotate(arr[i], 1);
        else
            sumOfeven += Rotate(arr[i], 0);
    }
   
    // Update the caseTwo
    caseTwo = Math.Abs(sumOfodd - sumOfeven);
 
    // Return the maximum of caseOne
    // and caseTwo
    return Math.Max(caseOne, caseTwo);
}
 
    // Driver Code
    public static void Main(string[] args)
    {
 
        int[] arr = { 123, 86, 234, 189 };
    int n = arr.Length;
     Console.WriteLine((calcMinDiff(arr, n)));
    }
}
 
// This code is contributed by splevel62.


Javascript




<script>
 
// JavaScript program to implement
// the above approach
 
// Function to find maximum and
// minimum value of a number that
// can be obtained by rotating bits
function Rotate(n, f)
{
  
    // Stores the value of N
    let temp = n;
  
    // Stores the maximum value
    let maxi = n;
  
    // Stores the minimum value
    let mini = n;
  
    for (let idx = 0; idx < 7; idx++) {
  
        // If temp is odd
        if (temp %2 == 1) {
            temp >>= 1;
            temp += Math.pow(2, 7);
        }
  
        else
            temp >>= 1;
  
        // Update the maximum
        // and the minimum value
        mini = Math.min(mini, temp);
        maxi = Math.max(maxi, temp);
    }
  
    // If flag is 1, then
    // return the maximum value
    if (f==1)
        return (maxi);
  
    // Otherwise, return
    // the maximum value
    else
        return (mini);
}
  
// Function to find the maximum difference
// between the sum of odd and even-indexed
// array elements possible by rotating bits
function calcMinDiff(arr, n)
{
  
    // Stores the maximum difference
    let caseOne = 0;
  
    // Stores the sum of elements
    // present at odd indices
    let sumOfodd = 0;
  
    // Stores the sum of elements
    // present at even indices
    let sumOfeven = 0;
  
    // Traverse the given array
    for (let i = 0; i < n; i++) {
  
        // If the index is even
        if (i % 2==0)
            sumOfodd += Rotate(arr[i], 0);
        else
            sumOfeven += Rotate(arr[i], 1);
    }
  
    // Update the caseOne
    caseOne = Math.abs(sumOfodd - sumOfeven);
  
    // Stores the maximum difference
    let caseTwo = 0;
  
    // Stores the sum of elements
    // placed at odd positions
    sumOfodd = 0;
  
    // Stores the sum of elements
    // placed at even positions
    sumOfeven = 0;
  
    // Traverse the array
    for (let i = 0; i < n; i++)
    {
  
        // If the index is even
        if (i % 2==0)
            sumOfodd += Rotate(arr[i], 1);
        else
            sumOfeven += Rotate(arr[i], 0);
    }
    
    // Update the caseTwo
    caseTwo = Math.abs(sumOfodd - sumOfeven);
  
    // Return the maximum of caseOne
    // and caseTwo
    return Math.max(caseOne, caseTwo);
}
 
// Driver code
 
    let arr = [ 123, 86, 234, 189 ];
    let n = arr.length;
     document.write((calcMinDiff(arr, n)));
            
</script>


Output: 

326

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Last Updated :
27 May, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

RELATED ARTICLES

Most Popular

Recent Comments