Given a numeric string S of length N and a digit K, the task is to find the maximum number of distinct strings having a maximum occurrence of K in it formed by replacing any two adjacent digits of S with K if their sum is K.
Examples:
Input: S = “313”, K = 4
Output: 2
Explanation: Possible strings that can be generated are:
- Replacing S[0] and S[1] with K modifies S to “43”.
- Replacing S[1] and S[2] with K modifies S to “34”.
Input: S = “12352”, K = 7
Output: 1
Explanation: Only string possible is by replacing S[3] and S[4] with K i.e., S = “1237”.
Approach: The given problem can be solved using the observation that for some substring of S, there are two types of possibility to contribute to the result i.e., it can be a sequence of “xy” having an equal number of x and y i.e., “xyxy…xyxy” or it can be a sequence of xy having one extra x i.e., “xyxy…xyxyx” where x + y = K.
- Case 1: String of the form “xyxy…xyxy” can be converted to the string “KK…KK” where K occurs (length of substring)/2 times. So, the number of distinct strings that will be formed is 1.
- Case 2: String of the form “xyxy…xyxyx” has one extra ‘x’ and can be converted into the string “KK…KKx” where K occurs (length of substring-1)/2 times. Let this value is M. Upon observation, it can be seen that there will be (M + 1) possible positions for x in the converted string.
Follow the below steps to solve the problem:
- Initialize the variables ans with 1, flag with 0, and start_index with -1 where ans will store the answer up to index i and start_index will be used to store the starting index of each substring from where the desired sequence started.
- Traverse the string S and do the following:
- If the sum of any adjacent digits S[i] and S[i + 1] is K and flag is set to false, set flag to true and start_index to i.
- If flag is true and S[i] and S[i + 1] is not K, set flag to false and also, if (start_index – i + 1) is odd, multiply ans by (start_index – i + 1 – 1)/2 + 1 as stated in Case 2.
- After traversing the string S, if flag is true and (N – start_index) is odd, multiply ans by (N – start_index – 1)/2 + 1.
- After completing the above steps, print ans as the required answer.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the desired number // of strings void countStrings(string s, int k) { // Store the count of strings int ans = 1; // Store the length of the string int len = s.size(); // Initialize variable to indicate // the start of the substring int flag = 0; // Store the starting index of // the substring int start_ind; // Traverse the string for ( int i = 0; i < len - 1; i++) { // If sum of adjacent characters // is K mark the starting index // and set flag to 1 if (s[i] - '0' + s[i + 1] - '0' == k && flag == 0) { flag = 1; start_ind = i; } // If sum of adjacent characters // is not K and the flag variable // is set, end the substring here if (flag == 1 && s[i] - '0' + s[i + 1] - '0' != k) { // Set flag to 0 denoting // the end of substring flag = 0; // Check if the length of the // substring formed is odd if ((i - start_ind + 1) % 2 != 0) // Update the answer ans *= (i - start_ind + 1 - 1) / 2 + 1; } } // If flag is set and end of string // is reached, mark the end of substring if (flag == 1 && (len - start_ind) % 2 != 0) // Update the answer ans *= (len - start_ind) / 2 + 1; // Print the answer cout << ans; } // Driver Code int main() { string S = "313" ; int K = 4; // Function Call countStrings(S, K); } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find the desired number // of strings static void countStrings(String s, int k) { // Store the count of strings int ans = 1 ; // Store the length of the string int len = s.length(); // Initialize variable to indicate // the start of the substring int flag = 0 ; // Store the starting index of // the substring int start_ind = 0 ; // Traverse the string for ( int i = 0 ; i < len - 1 ; i++) { // If sum of adjacent characters // is K mark the starting index // and set flag to 1 if (s.charAt(i) - '0' + s.charAt(i + 1 ) - '0' == k && flag == 0 ) { flag = 1 ; start_ind = i; } // If sum of adjacent characters // is not K and the flag variable // is set, end the substring here if (flag == 1 && s.charAt(i) - '0' + s.charAt(i + 1 ) - '0' != k) { // Set flag to 0 denoting // the end of substring flag = 0 ; // Check if the length of the // substring formed is odd if ((i - start_ind + 1 ) % 2 != 0 ) // Update the answer ans *= (i - start_ind + 1 - 1 ) / 2 + 1 ; } } // If flag is set and end of string // is reached, mark the end of substring if (flag == 1 && (len - start_ind) % 2 != 0 ) // Update the answer ans *= (len - start_ind) / 2 + 1 ; // Print the answer System.out.println(ans); } // Driver Code public static void main(String[] args) { String S = "313" ; int K = 4 ; // Function Call countStrings(S, K); } } // This code is contributed by jana_sayantan |
Python3
# Python program to implement # the above approach # Function to find the desired number # of strings def countStrings(s, k) : # Store the count of strings ans = 1 # Store the length of the string lenn = len (s) # Initialize variable to indicate # the start of the substring flag = 0 # Traverse the string for i in range (lenn - 1 ): # If sum of adjacent characters # is K mark the starting index # and set flag to 1 if ( ord (s[i]) - ord ( '0' ) + ord (s[i + 1 ]) - ord ( '0' ) = = k and flag = = 0 ) : flag = 1 start_ind = i # If sum of adjacent characters # is not K and the flag variable # is set, end the substring here if (flag = = 1 and ord (s[i]) - ord ( '0' ) + ord (s[i + 1 ]) - ord ( '0' ) ! = k) : # Set flag to 0 denoting # the end of substring flag = 0 # Check if the length of the # substring formed is odd if ((i - start_ind + 1 ) % 2 ! = 0 ) : # Update the answer ans * = (i - start_ind + 1 - 1 ) / / 2 + 1 # If flag is set and end of string # is reached, mark the end of substring if (flag = = 1 and (lenn - start_ind) % 2 ! = 0 ): # Update the answer ans * = (lenn - start_ind) / / 2 + 1 # Print the answer print (ans) # Driver Code S = "313" K = 4 # Function Call countStrings(S, K) # This code is contributed by susmitakundugoaldanga |
C#
// C# program for the above approach using System; class GFG{ // Function to find the desired number // of strings static void countStrings(String s, int k) { // Store the count of strings int ans = 1; // Store the length of the string int len = s.Length; // Initialize variable to indicate // the start of the substring int flag = 0; // Store the starting index of // the substring int start_ind = 0; // Traverse the string for ( int i = 0; i < len - 1; i++) { // If sum of adjacent characters // is K mark the starting index // and set flag to 1 if (s[i] - '0' + s[i + 1] - '0' == k && flag == 0) { flag = 1; start_ind = i; } // If sum of adjacent characters // is not K and the flag variable // is set, end the substring here if (flag == 1 && s[i] - '0' + s[i + 1] - '0' != k) { // Set flag to 0 denoting // the end of substring flag = 0; // Check if the length of the // substring formed is odd if ((i - start_ind + 1) % 2 != 0) // Update the answer ans *= (i - start_ind + 1 - 1) / 2 + 1; } } // If flag is set and end of string // is reached, mark the end of substring if (flag == 1 && (len - start_ind) % 2 != 0) // Update the answer ans *= (len - start_ind) / 2 + 1; // Print the answer Console.WriteLine(ans); } // Driver Code public static void Main(String[] args) { String S = "313" ; int K = 4; // Function Call countStrings(S, K); } } // This code is contributed by Princi Singh |
Javascript
<script> // Javascript program for the above approach // Function to find the desired number // of strings function countStrings(s, k) { // Store the count of strings var ans = 1; // Store the length of the string var len = s.length; // Initialize variable to indicate // the start of the substring var flag = 0; // Store the starting index of // the substring var start_ind; // Traverse the string for ( var i = 0; i < len - 1; i++) { // If sum of adjacent characters // is K mark the starting index // and set flag to 1 if ((s[i].charCodeAt(0) - '0' .charCodeAt(0) + s[i + 1].charCodeAt(0) - '0' .charCodeAt(0)) == k && flag == 0) { flag = 1; start_ind = i; } // If sum of adjacent characters // is not K and the flag variable // is set, end the substring here if (flag == 1 && (s[i].charCodeAt(0) - '0' .charCodeAt(0) + s[i + 1].charCodeAt(0) - '0' .charCodeAt(0)) != k) { // Set flag to 0 denoting // the end of substring flag = 0; // Check if the length of the // substring formed is odd if ((i - start_ind + 1) % 2 != 0) // Update the answer ans *= (i - start_ind + 1 - 1) / 2 + 1; } } // If flag is set and end of string // is reached, mark the end of substring if (flag == 1 && (len - start_ind) % 2 != 0) // Update the answer ans *= parseInt((len - start_ind) / 2) + 1; // Print the answer document.write( ans); } // Driver Code var S = "313" ; var K = 4; // Function Call countStrings(S, K); </script> |
2
Time Complexity: O(N)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!