Tuesday, January 14, 2025
Google search engine
HomeData Modelling & AIMaximize count of corresponding same elements in given Arrays by Rotation

Maximize count of corresponding same elements in given Arrays by Rotation

Given two arrays arr1[] and arr2[] of N integers and array arr1[] has distinct elements. The task is to find the maximum count of corresponding same elements in the given arrays by performing cyclic left or right shift on array arr1[]
Examples: 
 

Input: arr1[] = { 6, 7, 3, 9, 5 }, arr2[] = { 7, 3, 9, 5, 6 } 
Output:
Explanation: 
By performing cyclic left shift on array arr1[] by 1. 
Updated array arr1[] = {7, 3, 9, 5, 6}. 
This rotation contains a maximum number of equal elements between array arr1[] and arr2[].
Input: arr1[] = {1, 3, 2, 4}, arr2[] = {4, 2, 3, 1} 
Output:
Explanation: 
By performing cyclic left shift on array arr1[] by 1. 
Updated array arr1[] = {3, 2, 4, 1} 
This rotation contains a maximum number of equal elements between array arr1[] and arr2[]. 
 

 

Approach: This problem can be solved using Greedy Approach. Below are the steps: 
 

  1. Store the position of all the elements of the array arr2[] in an array(say store[]).
  2. For each element in the array arr1[], do the following: 
    • Find the difference(say diff) between the position of the current element in arr2[] with the position in arr1[].
    • If diff is less than 0 then update diff to (N – diff).
    • Store the frequency of current difference diff in a map.
  3. After the above steps, the maximum frequency stored in map is the maximum number of equal elements after rotation on arr1[].

Below is the implementation of the above approach: 
 

C++




// C++ program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that prints maximum
// equal elements
void maximumEqual(int a[], int b[],
                  int n)
{
 
    // Vector to store the index
    // of elements of array b
    vector<int> store(1e5);
 
    // Storing the positions of
    // array B
    for (int i = 0; i < n; i++) {
        store[b[i]] = i + 1;
    }
 
    // frequency array to keep count
    // of elements with similar
    // difference in distances
    vector<int> ans(1e5);
 
    // Iterate through all element in arr1[]
    for (int i = 0; i < n; i++) {
 
        // Calculate number of
        // shift required to
        // make current element
        // equal
        int d = abs(store[a[i]]
                    - (i + 1));
 
        // If d is less than 0
        if (store[a[i]] < i + 1) {
            d = n - d;
        }
 
        // Store the frequency
        // of current diff
        ans[d]++;
    }
 
    int finalans = 0;
 
    // Compute the maximum frequency
    // stored
    for (int i = 0; i < 1e5; i++)
        finalans = max(finalans,
                       ans[i]);
 
    // Printing the maximum number
    // of equal elements
    cout << finalans << "\n";
}
 
// Driver Code
int main()
{
    // Given two arrays
    int A[] = { 6, 7, 3, 9, 5 };
    int B[] = { 7, 3, 9, 5, 6 };
 
    int size = sizeof(A) / sizeof(A[0]);
 
    // Function Call
    maximumEqual(A, B, size);
    return 0;
}


Java




// Java program of the above approach
import java.util.*;
class GFG{
 
// Function that prints maximum
// equal elements
static void maximumEqual(int a[],
                         int b[], int n)
{
 
    // Vector to store the index
    // of elements of array b
    int store[] = new int[(int) 1e5];
 
    // Storing the positions of
    // array B
    for (int i = 0; i < n; i++)
    {
        store[b[i]] = i + 1;
    }
 
    // frequency array to keep count
    // of elements with similar
    // difference in distances
    int ans[] = new int[(int) 1e5];
 
    // Iterate through all element in arr1[]
    for (int i = 0; i < n; i++)
    {
 
        // Calculate number of
        // shift required to
        // make current element
        // equal
        int d = Math.abs(store[a[i]] - (i + 1));
 
        // If d is less than 0
        if (store[a[i]] < i + 1)
        {
            d = n - d;
        }
 
        // Store the frequency
        // of current diff
        ans[d]++;
    }
 
    int finalans = 0;
 
    // Compute the maximum frequency
    // stored
    for (int i = 0; i < 1e5; i++)
        finalans = Math.max(finalans,
                            ans[i]);
 
    // Printing the maximum number
    // of equal elements
    System.out.print(finalans + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
    // Given two arrays
    int A[] = { 6, 7, 3, 9, 5 };
    int B[] = { 7, 3, 9, 5, 6 };
 
    int size = A.length;
 
    // Function Call
    maximumEqual(A, B, size);
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program for the above approach
 
# Function that prints maximum
# equal elements
def maximumEqual(a, b, n):
 
    # List to store the index
    # of elements of array b
    store = [0] * 10 ** 5
     
    # Storing the positions of
    # array B
    for i in range(n):
        store[b[i]] = i + 1
 
    # Frequency array to keep count
    # of elements with similar
    # difference in distances
    ans = [0] * 10 ** 5
 
    # Iterate through all element
    # in arr1[]
    for i in range(n):
 
        # Calculate number of shift
        # required to make current
        # element equal
        d = abs(store[a[i]] - (i + 1))
 
        # If d is less than 0
        if (store[a[i]] < i + 1):
            d = n - d
 
        # Store the frequency
        # of current diff
        ans[d] += 1
         
    finalans = 0
 
    # Compute the maximum frequency
    # stored
    for i in range(10 ** 5):
        finalans = max(finalans, ans[i])
 
    # Printing the maximum number
    # of equal elements
    print(finalans)
 
# Driver Code
if __name__ == '__main__':
 
    # Given two arrays
    A = [ 6, 7, 3, 9, 5 ]
    B = [ 7, 3, 9, 5, 6 ]
 
    size = len(A)
 
    # Function Call
    maximumEqual(A, B, size)
 
 
# This code is contributed by Shivam Singh


C#




// C# program of the above approach
using System;
class GFG{
 
// Function that prints maximum
// equal elements
static void maximumEqual(int[] a,
                         int[] b, int n)
{
 
    // Vector to store the index
    // of elements of array b
    int[] store = new int[(int) 1e5];
 
    // Storing the positions of
    // array B
    for(int i = 0; i < n; i++)
    {
       store[b[i]] = i + 1;
    }
 
    // Frequency array to keep count
    // of elements with similar
    // difference in distances
    int[] ans = new int[(int) 1e5];
 
    // Iterate through all element in arr1[]
    for(int i = 0; i < n; i++)
    {
        
       // Calculate number of
       // shift required to
       // make current element
       // equal
       int d = Math.Abs(store[a[i]] - (i + 1));
        
       // If d is less than 0
       if (store[a[i]] < i + 1)
       {
           d = n - d;
       }
        
       // Store the frequency
       // of current diff
       ans[d]++;
    }
     
    int finalans = 0;
 
    // Compute the maximum frequency
    // stored
    for(int i = 0; i < 1e5; i++)
       finalans = Math.Max(finalans, ans[i]);
 
    // Printing the maximum number
    // of equal elements
    Console.Write(finalans + "\n");
}
 
// Driver Code
public static void Main()
{
     
    // Given two arrays
    int[]A = { 6, 7, 3, 9, 5 };
    int[]B = { 7, 3, 9, 5, 6 };
 
    int size = A.Length;
 
    // Function Call
    maximumEqual(A, B, size);
}
}
 
// This code is contributed by chitranayal


Javascript




<script>
 
// JavaScript program of the above approach
 
// Function that prints maximum
// equal elements
function maximumEqual(a, b, n)
{
   
    // Vector to store the index
    // of elements of array b
    let store = Array.from({length: 1e5}, (_, i) => 0); 
   
    // Storing the positions of
    // array B
    for (let i = 0; i < n; i++)
    {
        store[b[i]] = i + 1;
    }
   
    // frequency array to keep count
    // of elements with similar
    // difference in distances
    let ans = Array.from({length: 1e5}, (_, i) => 0); 
   
    // Iterate through all element in arr1[]
    for (let i = 0; i < n; i++)
    {
   
        // Calculate number of
        // shift required to
        // make current element
        // equal
        let d = Math.abs(store[a[i]] - (i + 1));
   
        // If d is less than 0
        if (store[a[i]] < i + 1)
        {
            d = n - d;
        }
   
        // Store the frequency
        // of current diff
        ans[d]++;
    }
   
    let finalans = 0;
   
    // Compute the maximum frequency
    // stored
    for (let i = 0; i < 1e5; i++)
        finalans = Math.max(finalans,
                            ans[i]);
   
    // Printing the maximum number
    // of equal elements
    document.write(finalans + "\n");
}
 
// Driver Code
 
    // Given two arrays
    let A = [ 6, 7, 3, 9, 5 ];
    let B = [ 7, 3, 9, 5, 6 ];
   
    let size = A.length;
   
    // Function Call
    maximumEqual(A, B, size);
           
</script>


Output: 

5

 

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments