Monday, January 13, 2025
Google search engine
HomeData Modelling & AIMaximize area of triangle formed by points on sides of given rectangle

Maximize area of triangle formed by points on sides of given rectangle

Given a rectangle [(x1, y1), (x2, y2)] denoting the coordinates of bottom-left corner and top-right corner whose sides are parallel to coordinates axes and N points on its perimeter (at least one on each side). The task is to maximize the area of a triangle formed by these points.

Examples:

Input: rectangle[][]= {{0, 0}, {6, 6}}, 
coordinates[][] = {{0, 2}, {0, 3}, {0, 5}, {2, 0}, {3, 0}, {6, 0}, {6, 4}, {1, 6}, {6, 6}}
Output: 18
Explanation: Refer to the image below for explanation

 

Approach: For finding the maximum area triangle by coordinates on a given rectangle, find the coordinates on each side which are most distant apart. So, suppose there are four sides a, b, c, d where a and c being the length of the rectangle and b, d being the breadth. Now the maximum area will be 
MAX ( length * ( distance between farthest coordinates on either of breadth) / 2, breadth * ( distance between farthest coordinates on either of length) / 2 ). 
Follow the steps below to solve the given problem.

  • Calculate the length = abs(x2 – x1) and breadth = abs(y2 – y1)
  • Find the coordinates which are farthest from each other on each side.
  • Use the above-mentioned formula to calculate the area.
  • Return the area found.

Below is the implementation of the above approach.

C++




// C++ program for above approach
#include <bits/stdc++.h>
#include <iostream>
using namespace std;
 
// To find the maximum area of triangle
void maxTriangleArea(int rectangle[2][2],
                     int coordinates[][2],
                     int numberOfCoordinates)
{
 
    int l1min = INT_MAX, l2min = INT_MAX,
        l1max = INT_MIN, l2max = INT_MIN,
        b1min = INT_MAX, b1max = INT_MIN,
        b2min = INT_MAX, b2max = INT_MIN;
 
    int l1Ycoordinate = rectangle[0][1];
    int l2Ycoordinate = rectangle[1][1];
 
    int b1Xcoordinate = rectangle[0][0];
    int b2Xcoordinate = rectangle[1][0];
 
    // Always consider side parallel
    // to x-axis as length and
    // side parallel to y-axis as breadth
    for (int i = 0; i < numberOfCoordinates;
         i++) {
        coordinates[i][1];
 
        // coordinate on l1
        if (coordinates[i][1] == l1Ycoordinate) {
            l1min = min(l1min,
                        coordinates[i][0]);
            l1max = max(l1max,
                        coordinates[i][0]);
        }
 
        // Coordinate on l2
        if (coordinates[i][1] == l2Ycoordinate) {
            l2min = min(l2min,
                        coordinates[i][0]);
            l2max = max(l2max,
                        coordinates[i][0]);
        }
 
        // Coordinate on b1
        if (coordinates[i][0] == b1Xcoordinate) {
            b1min = min(b1min,
                        coordinates[i][1]);
            b1max = max(b1max,
                        coordinates[i][1]);
        }
 
        // Coordinate on b2
        if (coordinates[i][0] == b2Xcoordinate) {
            b2min = min(b2min,
                        coordinates[i][1]);
            b2max = max(b2max,
                        coordinates[i][1]);
        }
    }
 
    // Find maximum possible distance
    // on length
    int maxOfLength = max(abs(l1max - l1min),
                          abs(l2max - l2min));
 
    // Find maximum possible distance
    // on breadth
    int maxofBreadth = max(abs(b1max - b1min),
                           abs(b2max - b2min));
 
    // Calculate result base * height / 2
    float result
        = max((maxofBreadth
               * (abs(rectangle[0][0]
                      - rectangle[1][0]))),
              (maxOfLength
               * (abs(rectangle[0][1]
                      - rectangle[1][1]))))
          / 2.0;
 
    // Print the result
    cout << result;
}
 
// Driver Code
int main()
{
    // Rectangle with x1, y1 and x2, y2
    int rectangle[2][2] = { { 0, 0 },
                            { 6, 6 } };
 
    // Coordinates on sides of given rectangle
    int coordinates[9][2]
        = { { 0, 2 }, { 0, 3 }, { 0, 5 },
            { 2, 0 }, { 3, 0 }, { 6, 0 },
            { 6, 4 }, { 1, 6 }, { 6, 6 } };
 
    int numberOfCoordinates
        = sizeof(coordinates) / sizeof(coordinates[0]);
 
    maxTriangleArea(rectangle, coordinates,
                    numberOfCoordinates);
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // To find the maximum area of triangle
  static void maxTriangleArea(int[ ][ ] rectangle,
                              int[ ][ ] coordinates,
                              int numberOfCoordinates)
  {
 
    int l1min = Integer.MAX_VALUE, l2min = Integer.MAX_VALUE,
    l1max = Integer.MIN_VALUE, l2max = Integer.MIN_VALUE,
    b1min = Integer.MAX_VALUE, b1max = Integer.MIN_VALUE,
    b2min = Integer.MAX_VALUE, b2max = Integer.MIN_VALUE;
 
    int l1Ycoordinate = rectangle[0][1];
    int l2Ycoordinate = rectangle[1][1];
 
    int b1Xcoordinate = rectangle[0][0];
    int b2Xcoordinate = rectangle[1][0];
 
    // Always consider side parallel
    // to x-axis as length and
    // side parallel to y-axis as breadth
    for (int i = 0; i < numberOfCoordinates; i++) {
 
      // coordinate on l1
      if (coordinates[i][1] == l1Ycoordinate) {
        l1min = Math.min(l1min,
                         coordinates[i][0]);
        l1max = Math.max(l1max,
                         coordinates[i][0]);
      }
 
      // Coordinate on l2
      if (coordinates[i][1] == l2Ycoordinate) {
        l2min = Math.min(l2min,
                         coordinates[i][0]);
        l2max = Math.max(l2max,
                         coordinates[i][0]);
      }
 
      // Coordinate on b1
      if (coordinates[i][0] == b1Xcoordinate) {
        b1min = Math.min(b1min,
                         coordinates[i][1]);
        b1max = Math.max(b1max,
                         coordinates[i][1]);
      }
 
      // Coordinate on b2
      if (coordinates[i][0] == b2Xcoordinate) {
        b2min = Math.min(b2min,
                         coordinates[i][1]);
        b2max = Math.max(b2max,
                         coordinates[i][1]);
      }
    }
 
    // Find maximum possible distance
    // on length
    int maxOfLength = Math.max(Math.abs(l1max - l1min),
                               Math.abs(l2max - l2min));
 
    // Find maximum possible distance
    // on breadth
    int maxofBreadth = Math.max(Math.abs(b1max - b1min),
                                Math.abs(b2max - b2min));
 
    // Calculate result base * height / 2
    int result
      = Math.max((maxofBreadth
                  * (Math.abs(rectangle[0][0]
                              - rectangle[1][0]))),
                 (maxOfLength
                  * (Math.abs(rectangle[0][1]
                              - rectangle[1][1]))))
      / 2;
 
    // Print the result
    System.out.print(result);
  }
 
  // Driver Code
  public static void main (String[] args)
  {
     
    // Rectangle with x1, y1 and x2, y2
    int[ ][ ] rectangle = { { 0, 0 },
                           { 6, 6 } };
 
    // Coordinates on sides of given rectangle
    int[ ][ ] coordinates
      = { { 0, 2 }, { 0, 3 }, { 0, 5 },
         { 2, 0 }, { 3, 0 }, { 6, 0 },
         { 6, 4 }, { 1, 6 }, { 6, 6 } };
 
    int numberOfCoordinates
      = coordinates.length;
 
    maxTriangleArea(rectangle, coordinates,
                    numberOfCoordinates);
  }
}
 
// This code is contributed by hrithikgarg03188.


Python3




# Python code for the above approach
 
# To find the maximum area of triangle
def maxTriangleArea(rectangle, coordinates, numberOfCoordinates):
 
    l1min = 10 ** 9
    l2min = 10 ** 9
    l1max = 10 ** -9
    l2max = 10 ** -9
    b1min = 10 ** 9
    b1max = 10 ** -9
    b2min = 10 ** 9
    b2max = 10 ** -9
 
    l1Ycoordinate = rectangle[0][1];
    l2Ycoordinate = rectangle[1][1];
 
    b1Xcoordinate = rectangle[0][0];
    b2Xcoordinate = rectangle[1][0];
 
    # Always consider side parallel
    # to x-axis as length and
    # side parallel to y-axis as breadth
    for i in range(numberOfCoordinates):
        coordinates[i][1];
 
        # coordinate on l1
        if (coordinates[i][1] == l1Ycoordinate) :
            l1min = min(l1min, coordinates[i][0]);
            l1max = max(l1max, coordinates[i][0]);
         
 
        # Coordinate on l2
        if (coordinates[i][1] == l2Ycoordinate):
            l2min = min(l2min, coordinates[i][0]);
            l2max = max(l2max, coordinates[i][0]);
 
 
        # Coordinate on b1
        if (coordinates[i][0] == b1Xcoordinate):
            b1min = min(b1min, coordinates[i][1]);
            b1max = max(b1max, coordinates[i][1]);
         
 
        # Coordinate on b2
        if (coordinates[i][0] == b2Xcoordinate):
            b2min = min(b2min, coordinates[i][1]);
            b2max = max(b2max, coordinates[i][1]);
         
 
    # Find maximum possible distance
    # on length
    maxOfLength = max(abs(l1max - l1min), abs(l2max - l2min));
 
    # Find maximum possible distance
    # on breadth
    maxofBreadth = max(abs(b1max - b1min), abs(b2max - b2min));
 
    # Calculate result base * height / 2
    result = max((maxofBreadth * (abs(rectangle[0][0] - rectangle[1][0]))),
            (maxOfLength * (abs(rectangle[0][1] - rectangle[1][1])))) / 2.0;
 
    # Print the result
    print(int(result));
 
 
# Driver Code
 
# Rectangle with x1, y1 and x2, y2
rectangle = [[0, 0],[6, 6]];
 
# Coordinates on sides of given rectangle
coordinates = [[0, 2], [0, 3], [0, 5],
    [2, 0], [3, 0], [6, 0],
    [6, 4], [1, 6], [6, 6]];
 
numberOfCoordinates = len(coordinates)
 
maxTriangleArea(rectangle, coordinates, numberOfCoordinates);
 
# This code is contributed by gfgking


C#




// C# program for the above approach
using System;
class GFG {
 
  // To find the maximum area of triangle
  static void maxTriangleArea(int[,] rectangle,
                              int[,] coordinates,
                              int numberOfCoordinates)
  {
 
    int l1min = Int32.MaxValue, l2min = Int32.MaxValue,
    l1max = Int32.MinValue, l2max = Int32.MinValue,
    b1min = Int32.MaxValue, b1max = Int32.MinValue,
    b2min = Int32.MaxValue, b2max = Int32.MinValue;
 
    int l1Ycoordinate = rectangle[0,1];
    int l2Ycoordinate = rectangle[1,1];
 
    int b1Xcoordinate = rectangle[0,0];
    int b2Xcoordinate = rectangle[1,0];
 
    // Always consider side parallel
    // to x-axis as length and
    // side parallel to y-axis as breadth
    for (int i = 0; i < numberOfCoordinates; i++) {
 
      // coordinate on l1
      if (coordinates[i,1] == l1Ycoordinate) {
        l1min = Math.Min(l1min,
                         coordinates[i,0]);
        l1max = Math.Max(l1max,
                         coordinates[i,0]);
      }
 
      // Coordinate on l2
      if (coordinates[i,1] == l2Ycoordinate) {
        l2min = Math.Min(l2min,
                         coordinates[i,0]);
        l2max = Math.Max(l2max,
                         coordinates[i,0]);
      }
 
      // Coordinate on b1
      if (coordinates[i,0] == b1Xcoordinate) {
        b1min = Math.Min(b1min,
                         coordinates[i,1]);
        b1max = Math.Max(b1max,
                         coordinates[i,1]);
      }
 
      // Coordinate on b2
      if (coordinates[i,0] == b2Xcoordinate) {
        b2min = Math.Min(b2min,
                         coordinates[i,1]);
        b2max = Math.Max(b2max,
                         coordinates[i,1]);
      }
    }
 
    // Find maximum possible distance
    // on length
    int maxOfLength = Math.Max(Math.Abs(l1max - l1min),
                               Math.Abs(l2max - l2min));
 
    // Find maximum possible distance
    // on breadth
    int maxofBreadth = Math.Max(Math.Abs(b1max - b1min),
                                Math.Abs(b2max - b2min));
 
    // Calculate result base * height / 2
    int result
      = Math.Max((maxofBreadth
                  * (Math.Abs(rectangle[0,0]
                              - rectangle[1,0]))),
                 (maxOfLength
                  * (Math.Abs(rectangle[0,1]
                              - rectangle[1,1]))))
      / 2;
 
    // Print the result
    Console.Write(result);
  }
 
  // Driver Code
  public static void Main ()
  {
 
    // Rectangle with x1, y1 and x2, y2
    int[,] rectangle = { { 0, 0 },
                        { 6, 6 } };
 
    // Coordinates on sides of given rectangle
    int[,] coordinates
      = { { 0, 2 }, { 0, 3 }, { 0, 5 },
         { 2, 0 }, { 3, 0 }, { 6, 0 },
         { 6, 4 }, { 1, 6 }, { 6, 6 } };
 
    int numberOfCoordinates
      = coordinates.GetLength(0);
 
    maxTriangleArea(rectangle, coordinates,
                    numberOfCoordinates);
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
       // JavaScript code for the above approach
 
 
       // To find the maximum area of triangle
       function maxTriangleArea(rectangle,
           coordinates,
           numberOfCoordinates) {
 
           let l1min = Number.MAX_VALUE, l2min = Number.MAX_VALUE,
               l1max = Number.MIN_VALUE, l2max = Number.MIN_VALUE,
               b1min = Number.MAX_VALUE, b1max = Number.MIN_VALUE,
               b2min = Number.MAX_VALUE, b2max = Number.MIN_VALUE;
 
           let l1Ycoordinate = rectangle[0][1];
           let l2Ycoordinate = rectangle[1][1];
 
           let b1Xcoordinate = rectangle[0][0];
           let b2Xcoordinate = rectangle[1][0];
 
           // Always consider side parallel
           // to x-axis as length and
           // side parallel to y-axis as breadth
           for (let i = 0; i < numberOfCoordinates;
               i++) {
               coordinates[i][1];
 
               // coordinate on l1
               if (coordinates[i][1] == l1Ycoordinate) {
                   l1min = Math.min(l1min,
                       coordinates[i][0]);
                   l1max = Math.max(l1max,
                       coordinates[i][0]);
               }
 
               // Coordinate on l2
               if (coordinates[i][1] == l2Ycoordinate) {
                   l2min = Math.min(l2min,
                       coordinates[i][0]);
                   l2max = Math.max(l2max,
                       coordinates[i][0]);
               }
 
               // Coordinate on b1
               if (coordinates[i][0] == b1Xcoordinate) {
                   b1min = Math.min(b1min,
                       coordinates[i][1]);
                   b1max = Math.max(b1max,
                       coordinates[i][1]);
               }
 
               // Coordinate on b2
               if (coordinates[i][0] == b2Xcoordinate) {
                   b2min = Math.min(b2min,
                       coordinates[i][1]);
                   b2max = Math.max(b2max,
                       coordinates[i][1]);
               }
           }
 
           // Find maximum possible distance
           // on length
           let maxOfLength = Math.max(Math.abs(l1max - l1min),
               Math.abs(l2max - l2min));
 
           // Find maximum possible distance
           // on breadth
           let maxofBreadth = Math.max(Math.abs(b1max - b1min),
               Math.abs(b2max - b2min));
 
           // Calculate result base * height / 2
           let result
               = Math.max((maxofBreadth
                   * (Math.abs(rectangle[0][0]
                       - rectangle[1][0]))),
                   (maxOfLength
                       * (Math.abs(rectangle[0][1]
                           - rectangle[1][1]))))
               / 2.0;
 
           // Print the result
           document.write(result);
       }
 
       // Driver Code
 
       // Rectangle with x1, y1 and x2, y2
       let rectangle = [[0, 0],
       [6, 6]];
 
       // Coordinates on sides of given rectangle
       let coordinates
           = [[0, 2], [0, 3], [0, 5],
           [2, 0], [3, 0], [6, 0],
           [6, 4], [1, 6], [6, 6]];
 
       let numberOfCoordinates
           = coordinates.length;
 
       maxTriangleArea(rectangle, coordinates,
           numberOfCoordinates);
 
      // This code is contributed by Potta Lokesh
   </script>


Output

18

Time complexity: O(N), Where N is the number of coordinates given.
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments