Saturday, January 11, 2025
Google search engine
HomeData Modelling & AIMaximise the sum of two Numbers using at most one swap between...

Maximise the sum of two Numbers using at most one swap between them

Given two natural numbers N1 and N2, the task is to find the maximum sum possible after swapping of a single digit between them.
Examples: 

Input: N1 = 984788, N2 = 706 
Output: 988194 
Explanation: 
Swapping 4 from N1 with 7 from N2, we get N1 = 987788 and N2 = 406 
Sum = 988194

Input: N1 = 9987, N2 = 123 
Output: 10740 
Explanation: 
Swapping 8 from N1 with 1 from N2, we get N1 = 9917 and N2 = 823 
Sum = 10740 

Approach: 

  1. Compare N1 and N2 and store the digits of the larger of the two in array arr1 and that of the smaller in arr2 respectively.
  2. If both the numbers are of different lengths, find the index of maximum element in arr2, and the most significant index in arr1, and swap them to maximize the sum.
  3. If both the numbers are of same length
    • Iterate both the arrays arr1 and arr2 at the same time.
    • For each digit at index i in both the arrays, find the difference between the current digit and the largest digit left to index ‘i’.
    • Compare the difference to find the most significant digit and most significant index, whose value needs to be swapped.
  4. Restore the new numbers from arr1 and arr2 and calculate the maximized sum.

Below code is the implementation of the above approach:

C++




// C++ program to maximise the sum of two
// Numbers using at most one swap between them
 
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 100
 
// Function to maximize the sum
// by swapping only one digit
void findMaxSum(int n1, int n2)
{
 
    int arr1[MAX] = { 0 }, arr2[MAX] = { 0 };
    int l1 = 0, l2 = 0;
 
    int max1 = max(n1, n2);
    int min1 = min(n1, n2);
 
    // Store digits of max(n1, n2)
    for (int i = max1; i > 0; i /= 10)
        arr1[l1++] = (i % 10);
 
    // Store digits of min(n1, n2)
    for (int i = min1; i > 0; i /= 10)
        arr2[l2++] = (i % 10);
 
    int f = 0;
 
    // If length of the two numbers
    // are unequal
    if (l1 != l2) {
        // Find the most significant number
        // and the most significant index
        // for swapping
        int index = (max_element(arr2, arr2 + l2) - arr2);
        for (int i = l1 - 1; i > (l2 - 1); i--) {
            if (arr1[i] < arr2[index]) {
                swap(arr1[i], arr2[index]);
                f = 1;
                break;
            }
        }
    }
 
    // If both numbers are
    // of equal length
    if (f != 1) {
 
        int index1 = 0, index2 = 0;
        int diff1 = 0, diff2 = 0;
        for (int i = l2 - 1; i >= 0; i--) {
 
            // Fetch the index of current maximum
            // digit present in both the arrays
            index1 = (max_element(arr1, arr1 + i) - arr1);
            index2 = (max_element(arr2, arr2 + i) - arr2);
 
            // Compute the difference
            diff1 = (arr2[index2] - arr1[i]);
            diff2 = (arr1[index1] - arr2[i]);
 
            // Find the most significant index
            // and the most significant digit
            // to be swapped
            if (diff1 > 0 || diff2 > 0) {
 
                if (diff1 > diff2) {
                    swap(arr1[i], arr2[index2]);
                    break;
                }
 
                else if (diff2 > diff1) {
                    swap(arr2[i], arr1[index1]);
                    break;
                }
 
                else if (diff1 == diff2) {
 
                    if (index1 <= index2) {
                        swap(arr2[i], arr1[index1]);
                        break;
                    }
 
                    else if (index2 <= index1) {
                        swap(arr1[i], arr2[index2]);
                        break;
                    }
                }
            }
        }
    }
 
    // Restore the new numbers
    int f_n1 = 0, f_n2 = 0;
    for (int i = l1 - 1; i >= 0; i--) {
        f_n1 = (f_n1 * 10) + arr1[i];
        f_n2 = (f_n2 * 10) + arr2[i];
    }
 
    // Display the maximized sum
    cout << (f_n1 + f_n2) << "\n";
}
 
// Driver function
int main()
{
    int N1 = 9987;
    int N2 = 123;
 
    findMaxSum(N1, N2);
    return 0;
}


Java




// Java program to maximise the sum of two
// Numbers using at most one swap between them
import java.util.*;
 
class GFG{
 
static int MAX = 100;
 
static int max_element(int arr[], int pos)
{
    int tmp = arr[0];
    int ind = 0;
     
    for(int i = 1; i < pos; i++)
    {
        if (tmp < arr[i])
        {
            tmp = arr[i];
            ind = i;
        }
    }
    return ind;
}
 
// Function to maximize the sum
// by swapping only one digit
static void findMaxSum(int n1, int n2)
{
    int []arr1 = new int[MAX];
    int []arr2 = new int[MAX];
    int l1 = 0, l2 = 0;
 
    int max1 = Math.max(n1, n2);
    int min1 = Math.min(n1, n2);
 
    // Store digits of max(n1, n2)
    for(int i = max1; i > 0; i /= 10)
        arr1[l1++] = (i % 10);
 
    // Store digits of min(n1, n2)
    for(int i = min1; i > 0; i /= 10)
        arr2[l2++] = (i % 10);
 
    int f = 0;
 
    // If length of the two numbers
    // are unequal
    if (l1 != l2)
    {
         
        // Find the most significant number
        // and the most significant index
        // for swapping
        int index = (max_element(arr2, l2));
        for(int i = l1 - 1; i > (l2 - 1); i--)
        {
            if (arr1[i] < arr2[index])
            {
                int tmp = arr1[i];
                arr1[i] = arr2[index];
                arr2[index] = tmp;
                f = 1;
                break;
            }
        }
    }
 
    // If both numbers are
    // of equal length
    if (f != 1)
    {
        int index1 = 0, index2 = 0;
        int diff1 = 0, diff2 = 0;
         
        for(int i = l2 - 1; i >= 0; i--)
        {
             
            // Fetch the index of current maximum
            // digit present in both the arrays
            index1 = (max_element(arr1, i));
            index2 = (max_element(arr2, i));
 
            // Compute the difference
            diff1 = (arr2[index2] - arr1[i]);
            diff2 = (arr1[index1] - arr2[i]);
 
            // Find the most significant index
            // and the most significant digit
            // to be swapped
            if (diff1 > 0 || diff2 > 0)
            {
                if (diff1 > diff2)
                {
                    int tmp = arr1[i];
                    arr1[i] = arr2[index2];
                    arr2[index2] = tmp;
                    break;
                }
 
                else if (diff2 > diff1)
                {
                    int tmp = arr1[index1];
                    arr1[index1] = arr2[i];
                    arr2[i] = tmp;
                    break;
                }
 
                else if (diff1 == diff2)
                {
                    if (index1 <= index2)
                    {
                        int tmp = arr1[index1];
                        arr1[index1] = arr2[i];
                        arr2[i] = tmp;
                        break;
                    }
 
                    else if (index2 <= index1)
                    {
                        int tmp = arr1[i];
                        arr1[i] = arr2[index2];
                        arr2[index2] = tmp;
                        break;
                    }
                }
            }
        }
    }
 
    // Restore the new numbers
    int f_n1 = 0, f_n2 = 0;
    for(int i = l1 - 1; i >= 0; i--)
    {
        f_n1 = (f_n1 * 10) + arr1[i];
        f_n2 = (f_n2 * 10) + arr2[i];
    }
 
    // Display the maximized sum
    System.out.println(f_n1 + f_n2);
}
 
// Driver code
public static void main(String[] args)
{
    int N1 = 9987;
    int N2 = 123;
 
    findMaxSum(N1, N2);
}
}
 
// This code is contributed by grand_master


Python3




# Python program to maximise the sum of two
# Numbers using at most one swap between them
MAX = 100
 
# Function to maximize the sum
# by swapping only one digit
def findMaxSum(n1, n2):
 
    arr1 = [0]*(MAX)
    arr2 = [0]*(MAX)
    l1 = 0
    l2 = 0
 
    max1 = max(n1, n2);
    min1 = min(n1, n2);
 
    # Store digits of max(n1, n2)
    i = max1
    while i > 0:
        arr1[l1] = (i % 10)
        l1 += 1
        i //= 10
 
    # Store digits of min(n1, n2)
    i = min1
    while i > 0:
        arr2[l2] = (i % 10)
        l2 += 1
        i //= 10
 
    f = 0
     
    # If length of the two numbers
    # are unequal
    if (l1 != l2):
         
        # Find the most significant number
        # and the most significant index
        # for swapping
        index = arr2.index(max(arr2))
        for i in range ( l1 - 1, (l2 - 1), -1):
            if (arr1[i] < arr2[index]):
                (arr1[i], arr2[index]) = (arr2[index],arr1[i])
                f = 1
                break
 
    # If both numbers are
    # of equal length
    if (f != 1):
 
        index1 = 0
        index2 = 0
        diff1 = 0
        diff2 = 0
        for i in range( l2 - 1, -1,-1):
             
            # Fetch the index of current maximum
            # digit present in both the arrays
            index1 = arr1.index(max(arr1[:i]))
            index2 = arr2.index(max(arr2[:i]))
             
            # Compute the difference
            diff1 = (arr2[index2] - arr1[i]);
            diff2 = (arr1[index1] - arr2[i]);
             
 
            # Find the most significant index
            # and the most significant digit
            # to be swapped
            if (diff1 > 0 or diff2 > 0):
                if (diff1 > diff2):
                    arr1[i], arr2[index2] = arr2[index2],arr1[i]
                    break
 
                elif (diff2 > diff1):
                    arr2[i], arr1[index1] = arr1[index1],arr2[i]
                    break
 
                elif (diff1 == diff2):
                    if (index1 <= index2):
                        arr2[i], arr1[index1] = arr1[index1],arr2[i]
                        break
 
                    elif (index2 <= index1):
                        arr1[i], arr2[index2] = arr2[index2],arr1[i]
                        break;
 
    # Restore the new numbers
    f_n1 = 0
    f_n2 = 0
    for i in range (l1 - 1, -1,-1):
        f_n1 = (f_n1 * 10) + arr1[i]
        f_n2 = (f_n2 * 10) + arr2[i]
     
    # Display the maximized sum
    print(f_n1 + f_n2)
 
# Driver function
N1 = 9987
N2 = 123
 
findMaxSum(N1, N2)
 
# This code is contributed by ANKITKUMAR34


C#




// C# program to maximise the sum of two
// Numbers using at most one swap between them
using System;
 
class GFG{
 
static int MAX = 100;
 
static int max_element(int []arr, int pos)
{
    int tmp = arr[0];
    int ind = 0;
     
    for(int i = 1; i < pos; i++)
    {
        if (tmp < arr[i])
        {
            tmp = arr[i];
            ind = i;
        }
    }
    return ind;
}
 
// Function to maximize the sum
// by swapping only one digit
static void findMaxSum(int n1, int n2)
{
 
    int []arr1 = new int[MAX];
    int []arr2 = new int[MAX];
    int l1 = 0, l2 = 0;
 
    int max1 = Math.Max(n1, n2);
    int min1 = Math.Min(n1, n2);
 
    // Store digits of max(n1, n2)
    for(int i = max1; i > 0; i /= 10)
        arr1[l1++] = (i % 10);
 
    // Store digits of min(n1, n2)
    for(int i = min1; i > 0; i /= 10)
        arr2[l2++] = (i % 10);
 
    int f = 0;
 
    // If length of the two numbers
    // are unequal
    if (l1 != l2)
    {
         
        // Find the most significant number
        // and the most significant index
        // for swapping
        int index = (max_element(arr2,l2));
        for(int i = l1 - 1; i > (l2 - 1); i--)
        {
            if (arr1[i] < arr2[index])
            {
                int tmp = arr1[i];
                arr1[i] = arr2[index];
                arr2[index] = tmp;
                f = 1;
                break;
            }
        }
    }
 
    // If both numbers are
    // of equal length
    if (f != 1)
    {
        int index1 = 0, index2 = 0;
        int diff1 = 0, diff2 = 0;
         
        for(int i = l2 - 1; i >= 0; i--)
        {
             
            // Fetch the index of current maximum
            // digit present in both the arrays
            index1 = (max_element(arr1, i));
            index2 = (max_element(arr2, i));
 
            // Compute the difference
            diff1 = (arr2[index2] - arr1[i]);
            diff2 = (arr1[index1] - arr2[i]);
 
            // Find the most significant index
            // and the most significant digit
            // to be swapped
            if (diff1 > 0 || diff2 > 0)
            {
                if (diff1 > diff2)
                {
                    int tmp = arr1[i];
                    arr1[i] = arr2[index2];
                    arr2[index2] = tmp;
                    break;
                }
 
                else if (diff2 > diff1)
                {
                    int tmp = arr1[index1];
                    arr1[index1] = arr2[i];
                    arr2[i] = tmp;
                    break;
                }
 
                else if (diff1 == diff2)
                {
                    if (index1 <= index2)
                    {
                        int tmp = arr1[index1];
                        arr1[index1] = arr2[i];
                        arr2[i] = tmp;
                        break;
                    }
 
                    else if (index2 <= index1)
                    {
                        int tmp = arr1[i];
                        arr1[i] = arr2[index2];
                        arr2[index2] = tmp;
                        break;
                    }
                }
            }
        }
    }
 
    // Restore the new numbers
    int f_n1 = 0, f_n2 = 0;
    for(int i = l1 - 1; i >= 0; i--)
    {
        f_n1 = (f_n1 * 10) + arr1[i];
        f_n2 = (f_n2 * 10) + arr2[i];
    }
 
    // Display the maximized sum
    Console.Write(f_n1 + f_n2);
}
 
// Driver code
public static void Main(string[] args)
{
    int N1 = 9987;
    int N2 = 123;
 
    findMaxSum(N1, N2);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
 
// JavaScript program to maximise the sum of two
// Numbers using at most one swap between them
 
let MAX = 100;
  
function max_element(arr, pos)
{
    let tmp = arr[0];
    let ind = 0;
      
    for(let i = 1; i < pos; i++)
    {
        if (tmp < arr[i])
        {
            tmp = arr[i];
            ind = i;
        }
    }
    return ind;
}
  
// Function to maximize the sum
// by swapping only one digit
function findMaxSum(n1, n2)
{
    let arr1 = Array.from({length: MAX}, (_, i) => 0);
    let arr2 = Array.from({length: MAX}, (_, i) => 0);
    let l1 = 0, l2 = 0;
  
    let max1 = Math.max(n1, n2);
    let min1 = Math.min(n1, n2);
  
    // Store digits of max(n1, n2)
    for(let i = max1; i > 0; i = Math.floor(i / 10))
        arr1[l1++] = (i % 10);
  
    // Store digits of min(n1, n2)
    for(let i = min1; i > 0; i = Math.floor(i / 10))
        arr2[l2++] = (i % 10);
  
    let f = 0;
  
    // If length of the two numbers
    // are unequal
    if (l1 != l2)
    {
          
        // Find the most significant number
        // and the most significant index
        // for swapping
        let index = (max_element(arr2, l2));
        for(let i = l1 - 1; i > (l2 - 1); i--)
        {
            if (arr1[i] < arr2[index])
            {
                let tmp = arr1[i];
                arr1[i] = arr2[index];
                arr2[index] = tmp;
                f = 1;
                break;
            }
        }
    }
  
    // If both numbers are
    // of equal length
    if (f != 1)
    {
        let index1 = 0, index2 = 0;
        let diff1 = 0, diff2 = 0;
          
        for(let i = l2 - 1; i >= 0; i--)
        {
              
            // Fetch the index of current maximum
            // digit present in both the arrays
            index1 = (max_element(arr1, i));
            index2 = (max_element(arr2, i));
  
            // Compute the difference
            diff1 = (arr2[index2] - arr1[i]);
            diff2 = (arr1[index1] - arr2[i]);
  
            // Find the most significant index
            // and the most significant digit
            // to be swapped
            if (diff1 > 0 || diff2 > 0)
            {
                if (diff1 > diff2)
                {
                    let tmp = arr1[i];
                    arr1[i] = arr2[index2];
                    arr2[index2] = tmp;
                    break;
                }
  
                else if (diff2 > diff1)
                {
                    let tmp = arr1[index1];
                    arr1[index1] = arr2[i];
                    arr2[i] = tmp;
                    break;
                }
  
                else if (diff1 == diff2)
                {
                    if (index1 <= index2)
                    {
                        let tmp = arr1[index1];
                        arr1[index1] = arr2[i];
                        arr2[i] = tmp;
                        break;
                    }
  
                    else if (index2 <= index1)
                    {
                        let tmp = arr1[i];
                        arr1[i] = arr2[index2];
                        arr2[index2] = tmp;
                        break;
                    }
                }
            }
        }
    }
  
    // Restore the new numbers
    let f_n1 = 0, f_n2 = 0;
    for(let i = l1 - 1; i >= 0; i--)
    {
        f_n1 = (f_n1 * 10) + arr1[i];
        f_n2 = (f_n2 * 10) + arr2[i];
    }
  
    // Display the maximized sum
    document.write(f_n1 + f_n2);
}
 
// Driver Code
     
    let N1 = 9987;
    let N2 = 123;
  
    findMaxSum(N1, N2); 
                   
</script>


Output: 

10740

 

Time Complexity: O(n)

Auxiliary Space: O(MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments