Saturday, January 4, 2025
Google search engine
HomeData Modelling & AIMax AND value for each index

Max AND value for each index

Given an array X[] of length N (N ? 2 ), the task is to output an array of maximum bitwise AND over all the possible sub-arrays having a size greater than 1 and starting or ending at index i, for every i (1 ? i ? N).

Examples:

Input: N = 4, X[] = {34, 44, 56, 32}
Output: 32 40 40 32 
Explanation: The explanation of the above output is as follows:

  • Index 1: All the possible sub-arrays such that they are starting or ending at i = 1 or A1 = 34, of size > 1:
    • {34, 44}, Bitwise AND of subarray = 32
    • {34, 44, 56}, Bitwise AND of subarray = 32
    • {34, 44, 56, 32}, Bitwise AND of subarray = 32
    • Maximum AND value among all possible sub-arrays is: 32
  • Index 2: All the possible sub-arrays such that they are starting or ending at i = 2 or A2 = 44, of size > 1:
    • Sub-arrays starting from index 2:
      • {44, 56} = Bitwise AND of subarray = 40
      • {44, 56, 32} = Bitwise AND of subarray = 32
    • Sub-arrays ending at index 2:
      • {34, 44} = Bitwise AND of subarray = 32
    • Maximum AND value among all possible sub-arrays for index 2 is: 40 
  • Index 3: Maximum AND sub-array among all ending or starting possible sub-arrays from i = 3 of size>1, which is starting from index 3 is = {44, 56} having max AND = 40  
  • Index 4: Maximum AND sub-array among all ending or starting possible sub-arrays from i = 4 of size>1, which is ending at index 4 is = {34, 44, 56, 32} having max AND = 32

So for each index i (1<= i <=N ), the Maximum AND values becomes: {32, 40, 40, 32}. Which is output. 

Input: N = 3, Y[] = {11, 23, 90}
Output: {3, 18, 18}
Explanation: It can be verified that the above inputs will generate these values. 

Approach: Implement the idea below to solve the problem

The problem is bitwise logic based and can be solved by using some observations. For more clarification see the Concept of approach section.

Concept of approach:

It should be noted that for each index the maximum AND subarray will with it’s adjacent index, Let assume we are finding max AND subarray for each index of an array A[] of length N(0 based indexing is used for explanation):

Then maximum AND for 1 to N-2 will be max(A[i] & A[i+1], A[i] & A [i-1] ) and for corner elements like index 0 and N-1 will (A[0] & A[1]) and (A[N-2] & A[N-1]). The key idea is that max AND will only decrease on adding more and more elements in a subarray, Therefore, only two adjacent elements are checked for max AND.  

Steps were taken to solve the problem:

  • For the first index print value of X[ 0 ]&X[ 1 ].
  • Run a loop from i = 0 to i <  N – 1 and follow the below-mentioned steps under the scope of the loop:
    • Print max(X[ i ]&X[i + 1], X[ i ]&X[i – 1]).
  • For the last index print value of X[N – 1]&X[N – 2].

Below is the code to implement the approach:

C++




// C++ code to implement the approach
 
#include <iostream>
using namespace std;
 
// Function to return array of max XOR of subarray
// containing for index i
void maxAndArray(long long arr[], int n)
{
    // Printing Max AND value for first index
    cout << (arr[0] & arr[1]) << " ";
    // Loop for printing Max AND value from second index to
    // second last index
    for (int i = 1; i < n - 1; i++) {
        long long x = arr[i] & arr[i + 1];
        long long y = arr[i] & arr[i - 1];
        cout << max(x, y) << " ";
    }
 
    // Printing Max AND value for last index
    cout << (arr[n - 1] & arr[n - 2]);
}
 
// Driver code
int main()
{
    // input value of N
    int N = 3;
    // Input arrays
    long long X[] = { 11, 23, 90 };
 
    // Function call
    maxAndArray(X, N);
 
    return 0;
}


Java




// Java code to implement the approach
 
import java.util.*;
public class Main {
 
    // Driver Function
    public static void main(String[] args)
    {
 
        // input value of N
        int N = 3;
 
        // Input arrays
        long X[] = { 11, 23, 90 };
 
        // Function call
        maxAndArray(X, N);
    }
 
    // method for returning array of max
    // xor of subarray containing for
    // index i
    static void maxAndArray(long[] arr, int n)
    {
 
        // Printing Max AND value for
        // first index
        System.out.print((arr[0] & arr[1]) + " ");
 
        // Loop for printing Max AND value
        // from second index to second
        // last index
        for (int i = 1; i < n - 1; i++) {
            long x = arr[i] & arr[i + 1];
            long y = arr[i] & arr[i - 1];
            System.out.print(Math.max(x, y) + " ");
        }
 
        // Printing Max AND value for last
        // index
        System.out.print(arr[n - 1] & arr[n - 2]);
    }
}


Python3




# Python3 code to implement the approach
# Function for returning array of max
# xor of subarray containing for
# index i
 
 
def maxAndArray(arr, n):
    # Printing Max AND value for
    # first index
    print((arr[0] & arr[1]), end=" ")
 
    # Loop for printing Max AND value
    # from second index to second
    # last index
    for i in range(1, n-1):
        x = arr[i] & arr[i+1]
        y = arr[i] & arr[i-1]
        print(max(x, y), end=" ")
 
    # Printing Max AND value for last
    # index
    print(arr[n-1] & arr[n-2])
 
 
# Driver code
  
# Input value of N
N = 3
 
# Input arrays
X = [11, 23, 90]
 
# Function call
maxAndArray(X, N)


C#




// C# code implementation
 
using System;
 
public class GFG {
 
    static public void Main()
    {
 
        // Code
        // input value of N
        int N = 3;
 
        // Input arrays
        long[] X = { 11, 23, 90 };
 
        // Function call
        maxAndArray(X, N);
    }
 
    // method for returning array of max xor of subarray
    // containing for index i
    static void maxAndArray(long[] arr, int n)
    {
 
        // Printing Max AND value for first index
        Console.Write((arr[0] & arr[1]) + " ");
 
        // Loop for printing Max AND value from second index
        // to second last index
        for (int i = 1; i < n - 1; i++) {
            long x = arr[i] & arr[i + 1];
            long y = arr[i] & arr[i - 1];
            Console.Write(Math.Max(x, y) + " ");
        }
 
        // Printing Max AND value for last index
        Console.Write(arr[n - 1] & arr[n - 2]);
    }
}
 
// This code is contributed by karthik.


Javascript




// JavaScript code
 
// Function to return array of max XOR of subarray
// containing for index i
function maxAndArray(arr, n) {
    // Printing Max AND value for first index
    console.log((arr[0] & arr[1]) + " ");
    // Loop for printing Max AND value from second index to
    // second last index
    for (let i = 1; i < n - 1; i++) {
        let x = arr[i] & arr[i + 1];
        let y = arr[i] & arr[i - 1];
        console.log(Math.max(x, y) + " ");
    }
 
    // Printing Max AND value for last index
    console.log(arr[n - 1] & arr[n - 2]);
}
 
// Driver code
function main() {
    // input value of N
    let N = 3;
    // Input arrays
    let X = [11, 23, 90];
 
    // Function call
    maxAndArray(X, N);
}
 
main();
// akashish__


Output

3 18 18

Time Complexity: O(N)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
21 Mar, 2023
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments