Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.ticker.IndexFormatter
The matplotlib.ticker.IndexFormatter
class is a subclass of matplotlib.ticker
class and is used to format the position x that is the nearest i-th label where i = int(x + 0.5). The positions with i len(list) have 0 tick labels.
Syntax: class matplotlib.ticker.IndexFormatter(labels)
Parameter :
- labels: It is a list of labels.
Example 1:
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl # create dummy data x = [ 'str{}' . format (k) for k in range ( 20 )] y = np.random.rand( len (x)) # create an IndexFormatter # with labels x x_fmt = mpl.ticker.IndexFormatter(x) fig,ax = plt.subplots() ax.plot(y) # set our IndexFormatter to be # responsible for major ticks ax.xaxis.set_major_formatter(x_fmt) |
Output:
Example 2:
from matplotlib.ticker import IndexFormatter, IndexLocator import pandas as pd import matplotlib.pyplot as plt years = range ( 2015 , 2018 ) fields = range ( 4 ) days = range ( 4 ) bands = [ 'R' , 'G' , 'B' ] index = pd.MultiIndex.from_product( [years, fields], names = [ 'year' , 'field' ]) columns = pd.MultiIndex.from_product( [days, bands], names = [ 'day' , 'band' ]) df = pd.DataFrame( 0 , index = index, columns = columns) df.loc[( 2015 , ), ( 0 , )] = 1 df.loc[( 2016 , ), ( 1 , )] = 1 df.loc[( 2017 , ), ( 2 , )] = 1 ax = plt.gca() plt.spy(df) xbase = len (bands) xoffset = xbase / 2 xlabels = df.columns.get_level_values( 'day' ) ax.xaxis.set_major_locator(IndexLocator(base = xbase, offset = xoffset)) ax.xaxis.set_major_formatter(IndexFormatter(xlabels)) plt.xlabel( 'Day' ) ax.xaxis.tick_bottom() ybase = len (fields) yoffset = ybase / 2 ylabels = df.index.get_level_values( 'year' ) ax.yaxis.set_major_locator(IndexLocator(base = ybase, offset = yoffset)) ax.yaxis.set_major_formatter(IndexFormatter(ylabels)) plt.ylabel( 'Year' ) plt.show() |
Output: