Friday, October 10, 2025
HomeLanguagesMatplotlib.ticker.AutoLocator Class in Python

Matplotlib.ticker.AutoLocator Class in Python

Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
 

matplotlib.ticker.AutoLocator

The matplotlib.ticker.AutoLocator class is a subclass of matplotlib.ticker.MaxNLocator, and has parameters nbins = ‘auto’ and steps = [1, 2, 2.5, 5, 10]. It is used to dynamically find major tick positions.
 

Syntax:class matplotlib.ticker.AutoLocator
Parameters: 
 

  • nbins: It is either an integer or ‘auto’, where the integer value represents the maximum number of intervals; one less than max number of ticks. The number of bins gets automatically determined on the basis of the length of the axis.It is an optional argument and has a default value of 10.
     
  • steps: It is an optional parameter representing a nice number sequence that starts from 1 and ends with 10.
     
  • integer: It is an optional boolean value. If set True, the ticks accepts only integer values, provided at least min_n_ticks integers are within the view limits.
     
  • symmetric: It is an optional value. If set to True, auto-scaling will result in a range symmetric about zero.
     
  • prune: It is an optional parameter that accepts either of the four values: {‘lower’, ‘upper’, ‘both’, None}. By default it is None. 
     

Example 1: 
 

Python3




import matplotlib
import matplotlib.pyplot as plt
import numpy as np
 
 
fig, axes = plt.subplots(3, 4,
                         sharex = 'row',
                         sharey = 'row',
                         squeeze = False)
 
data = np.random.rand(20, 2, 10)
 
for ax in axes.flatten()[:-1]:
     
    ax.plot(*np.random.randn(2, 10), marker ="o", ls ="")
 
 
 
# Now remove axes[1, 5] from
# the grouper for xaxis
axes[2, 3].get_shared_x_axes().remove(axes[2, 3])
 
# Create and assign new ticker
xticker = matplotlib.axis.Ticker()
axes[2, 3].xaxis.major = xticker
 
# The new ticker needs new locator
# and formatters
xloc = matplotlib.ticker.AutoLocator()
xfmt = matplotlib.ticker.ScalarFormatter()
 
axes[2, 3].xaxis.set_major_locator(xloc)
axes[2, 3].xaxis.set_major_formatter(xfmt)
 
# Now plot to the "ungrouped" axes
axes[2, 3].plot(np.random.randn(10)*100 + 100,
                np.linspace(-3, 3, 10),
                marker ="o", ls ="",
                color ="green")
 
plt.show()


Output: 
 

Example 2: 
 

Python3




import pylab as pl
from matplotlib import ticker
 
 
# helper function
def AutoLocatorInit(self):
     
    ticker.MaxNLocator.__init__(self,
                                nbins = 4,
                                steps =[1, 2, 5, 10])
 
 
ticker.AutoLocator.__init__ = AutoLocatorInit
 
pl.plot(pl.randn(100))
pl.figure()
pl.hist(pl.randn(1000), bins = 40)
 
pl.show()


Output: 
 

 

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32349 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6717 POSTS0 COMMENTS
Nicole Veronica
11880 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6838 POSTS0 COMMENTS
Ted Musemwa
7097 POSTS0 COMMENTS
Thapelo Manthata
6792 POSTS0 COMMENTS
Umr Jansen
6792 POSTS0 COMMENTS