Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.ticker.AutoLocator
The matplotlib.ticker.AutoLocator class is a subclass of matplotlib.ticker.MaxNLocator, and has parameters nbins = ‘auto’ and steps = [1, 2, 2.5, 5, 10]. It is used to dynamically find major tick positions.
Syntax:class matplotlib.ticker.AutoLocator
Parameters:
- nbins: It is either an integer or ‘auto’, where the integer value represents the maximum number of intervals; one less than max number of ticks. The number of bins gets automatically determined on the basis of the length of the axis.It is an optional argument and has a default value of 10.
- steps: It is an optional parameter representing a nice number sequence that starts from 1 and ends with 10.
- integer: It is an optional boolean value. If set True, the ticks accepts only integer values, provided at least min_n_ticks integers are within the view limits.
- symmetric: It is an optional value. If set to True, auto-scaling will result in a range symmetric about zero.
- prune: It is an optional parameter that accepts either of the four values: {‘lower’, ‘upper’, ‘both’, None}. By default it is None.
Example 1:
Python3
import matplotlib import matplotlib.pyplot as plt import numpy as np fig, axes = plt.subplots( 3 , 4 , sharex = 'row' , sharey = 'row' , squeeze = False ) data = np.random.rand( 20 , 2 , 10 ) for ax in axes.flatten()[: - 1 ]: ax.plot( * np.random.randn( 2 , 10 ), marker = "o" , ls = "") # Now remove axes[1, 5] from # the grouper for xaxis axes[ 2 , 3 ].get_shared_x_axes().remove(axes[ 2 , 3 ]) # Create and assign new ticker xticker = matplotlib.axis.Ticker() axes[ 2 , 3 ].xaxis.major = xticker # The new ticker needs new locator # and formatters xloc = matplotlib.ticker.AutoLocator() xfmt = matplotlib.ticker.ScalarFormatter() axes[ 2 , 3 ].xaxis.set_major_locator(xloc) axes[ 2 , 3 ].xaxis.set_major_formatter(xfmt) # Now plot to the "ungrouped" axes axes[ 2 , 3 ].plot(np.random.randn( 10 ) * 100 + 100 , np.linspace( - 3 , 3 , 10 ), marker = "o" , ls = "", color = "green" ) plt.show() |
Output:
Example 2:
Python3
import pylab as pl from matplotlib import ticker # helper function def AutoLocatorInit( self ): ticker.MaxNLocator.__init__( self , nbins = 4 , steps = [ 1 , 2 , 5 , 10 ]) ticker.AutoLocator.__init__ = AutoLocatorInit pl.plot(pl.randn( 100 )) pl.figure() pl.hist(pl.randn( 1000 ), bins = 40 ) pl.show() |
Output: