Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
matplotlib.pyplot.xticks() Function
The annotate() function in pyplot module of matplotlib library is used to get and set the current tick locations and labels of the x-axis.
Syntax:
matplotlib.pyplot.xticks(ticks=None, labels=None, **kwargs)Parameters: This method accept the following parameters that are described below:
- ticks: This parameter is the list of xtick locations. and an optional parameter. If an empty list is passed as an argument then it will removes all xticks
- labels: This parameter contains labels to place at the given ticks locations. And it is an optional parameter.
- **kwargs: This parameter is Text properties that is used to control the appearance of the labels.
Returns: This returns the following:
- locs :This returns the list of ytick locations.
- labels :This returns the list of ylabel Text objects.
The resultant is (locs, labels)
Below examples illustrate the matplotlib.pyplot.xticks() function in matplotlib.pyplot:
Example #1:
# Implementation of matplotlib.pyplot.xticks() # function import numpy as np import matplotlib.pyplot as plt x = [ 1 , 2 , 3 , 4 ] y = [ 95 , 38 , 54 , 35 ] labels = [ 'Geeks1' , 'Geeks2' , 'Geeks3' , 'Geeks4' ] plt.plot(x, y) # You can specify a rotation for the tick # labels in degrees or with keywords. plt.xticks(x, labels, rotation = 'vertical' ) # Pad margins so that markers don't get # clipped by the axes plt.margins( 0.2 ) # Tweak spacing to prevent clipping of tick-labels plt.subplots_adjust(bottom = 0.15 ) plt.show() |
Output:
Example #2:
# Implementation of matplotlib.pyplot.xticks() # function import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes def get_demo_image(): from matplotlib.cbook import get_sample_data import numpy as np f = get_sample_data( "axes_grid / bivariate_normal.npy" , asfileobj = False ) z = np.load(f) # z is a numpy array of 15x15 return z, ( 3 , 19 , 4 , 13 ) fig, ax = plt.subplots(figsize = [ 5 , 4 ]) Z, extent = get_demo_image() ax. set (aspect = 1 , xlim = ( 0 , 65 ), ylim = ( 0 , 50 )) axins = zoomed_inset_axes(ax, zoom = 2 , loc = 'upper right' ) im = axins.imshow(Z, extent = extent, interpolation = "nearest" , origin = "upper" ) plt.xlabel( 'X-axis' ) plt.ylabel( 'Y-axis' ) plt.xticks(visible = False ) plt.show() |
Output: